Suppr超能文献

靶向 PqsE 活性位点的小分子抗菌剂对抗. 的研究进展

The PqsE Active Site as a Target for Small Molecule Antimicrobial Agents against .

机构信息

Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States.

School of Medicine, Children's Healthcare of Atlanta, Inc., Department of Pediatrics, and Center for Cystic Fibrosis and Airway Diseases Research, Emory University, Atlanta, Georgia 30322, United States.

出版信息

Biochemistry. 2022 Sep 6;61(17):1894-1903. doi: 10.1021/acs.biochem.2c00334. Epub 2022 Aug 19.

Abstract

The opportunistic pathogen causes antibiotic-resistant, nosocomial infections in immuno-compromised individuals and is a high priority for antimicrobial development. Key to pathogenicity in are biofilm formation and virulence factor production. Both traits are controlled by the cell-to-cell communication process called quorum sensing (QS). QS involves the synthesis, release, and population-wide detection of signal molecules called autoinducers. We previously reported that the activity of the RhlR QS transcription factor depends on a protein-protein interaction with the hydrolase, PqsE, and PqsE catalytic activity is dispensable for this interaction. Nonetheless, the PqsE-RhlR interaction could be disrupted by the substitution of an active site glutamate residue with tryptophan [PqsE(E182W)]. Here, we show that disruption of the PqsE-RhlR interaction via either the E182W change or alteration of PqsE surface residues that are essential for the interaction with RhlR attenuates infection in a murine host. We use crystallography to characterize the conformational changes induced by the PqsE(E182W) substitution to define the mechanism underlying disruption of the PqsE-RhlR interaction. A loop rearrangement that repositions the E280 residue in PqsE(E182W) is responsible for the loss of interaction. We verify the implications garnered from the PqsE(E182W) structure using mutagenic, biochemical, and additional structural analyses. We present the next generation of molecules targeting the PqsE active site, including a structure of the tightest binding of these compounds, BB584, in complex with PqsE. The findings presented here provide insights into drug discovery against with PqsE as the target.

摘要

机会性病原体 在免疫功能低下的个体中引起抗生素耐药性的医院获得性感染,是抗菌药物开发的重中之重。 在 中,生物膜形成和毒力因子产生是关键致病因素。这两个特征都受到细胞间通讯过程(称为群体感应(QS))的控制。QS 涉及信号分子(称为自诱导物)的合成、释放和全种群检测。我们之前报道过,RhlR QS 转录因子的活性取决于与水解酶 PqsE 的蛋白-蛋白相互作用,并且 PqsE 的催化活性对于这种相互作用不是必需的。尽管如此,PqsE-RhlR 相互作用可以通过用色氨酸[PqsE(E182W)]取代活性位点谷氨酸残基来破坏。在这里,我们表明,通过 E182W 变化或改变与 RhlR 相互作用必不可少的 PqsE 表面残基来破坏 PqsE-RhlR 相互作用,可减弱 感染在小鼠宿主中的作用。我们使用晶体学来表征由 PqsE(E182W)取代引起的构象变化,以定义破坏 PqsE-RhlR 相互作用的机制。PqsE(E182W)中重新定位 E280 残基的环重排是导致相互作用丧失的原因。我们使用诱变、生化和其他结构分析来验证从 PqsE(E182W)结构中获得的推论。我们提出了针对 PqsE 活性位点的下一代靶向分子,包括这些化合物中与 PqsE 结合最紧密的 BB584 的结构。这里提出的发现为以 PqsE 为靶点的 药物发现提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f54/9454246/a242c24e1121/bi2c00334_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验