Groleau Marie-Christine, de Oliveira Pereira Thays, Dekimpe Valérie, Déziel Eric
Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Quebec, Canada.
Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Quebec, Canada
mSystems. 2020 May 26;5(3):e00194-20. doi: 10.1128/mSystems.00194-20.
The bacterium has emerged as a central threat in health care settings and can cause a large variety of infections. It expresses an arsenal of virulence factors and a diversity of survival functions, many of which are finely and tightly regulated by an intricate circuitry of three quorum sensing (QS) systems. The system is considered at the top of the QS hierarchy and activates the and systems. It is composed of the LasR transcriptional regulator and the LasI autoinducer synthase, which produces 3-oxo-C-homoserine lactone (3-oxo-C-HSL), the ligand of LasR. RhlR is the transcriptional regulator for the system and is associated with RhlI, which produces its cognate autoinducer C-HSL. The third QS system is composed of the operon and the MvfR (PqsR) regulator. PqsABCD synthetize 4-hydroxy-2-alkylquinolines (HAQs), which include ligands activating MvfR. PqsE is not required for HAQ production and instead is associated with the expression of genes controlled by the system. While RhlR is often considered the main regulator of , we confirmed that LasR is in fact the principal regulator of C-HSL production and that RhlR regulates and production of C-HSL essentially only in the absence of LasR by using liquid chromatography-mass spectrometry quantifications and gene expression reporters. Investigating the expression of RhlR targets also clarified that activation of RhlR-dependent QS relies on PqsE, especially when LasR is not functional. This work positions RhlR as the key QS regulator and points to PqsE as an essential effector for full activation of this regulation. is a versatile bacterium found in various environments. It can cause severe infections in immunocompromised patients and naturally resists many antibiotics. The World Health Organization listed it among the top priority pathogens for research and development of new antimicrobial compounds. Quorum sensing (QS) is a cell-cell communication mechanism, which is important for adaptation and pathogenesis. Here, we validate the central role of the PqsE protein in QS particularly by its impact on the regulator RhlR. This study challenges the traditional dogmas of QS regulation in and ties loose ends in our understanding of the traditional QS circuit by confirming RhlR to be the main QS regulator in PqsE could represent an ideal target for the development of new control methods against the virulence of This is especially important when considering that LasR-defective mutants frequently arise, e.g., in chronic infections.
该细菌已成为医疗机构中的主要威胁,可引发多种感染。它表达一系列毒力因子和多种生存功能,其中许多由三个群体感应(QS)系统组成的复杂调控网络进行精细且严格的调控。Las系统被认为处于QS层级的顶端,并激活Rhl和Pqs系统。它由LasR转录调节因子和LasI自诱导物合酶组成,LasI合酶产生3-氧代-C-高丝氨酸内酯(3-氧代-C-HSL),即LasR的配体。RhlR是Rhl系统的转录调节因子,与RhlI相关联,RhlI产生其同源自诱导物C-HSL。第三个QS系统由pqs操纵子和MvfR(PqsR)调节因子组成。PqsABCD合成4-羟基-2-烷基喹啉(HAQs),其中包括激活MvfR的配体。HAQ的产生不需要PqsE,相反,PqsE与受Pqs系统控制的基因表达相关。虽然RhlR通常被认为是Rhl系统的主要调节因子,但我们通过液相色谱-质谱定量分析和基因表达报告基因证实,LasR实际上是C-HSL产生的主要调节因子,而RhlR基本上仅在没有LasR的情况下调节C-HSL的产生和Rhl系统。对RhlR靶标的表达进行研究还表明,RhlR依赖性QS的激活依赖于PqsE,尤其是当LasR无功能时。这项工作将RhlR定位为关键的QS调节因子,并指出PqsE是该调节完全激活的必需效应物。铜绿假单胞菌是一种在各种环境中都能找到的多功能细菌。它可在免疫功能低下的患者中引起严重感染,并且天然耐受多种抗生素。世界卫生组织将其列为新型抗菌化合物研发的重点病原体之一。群体感应(QS)是一种细胞间通讯机制,对铜绿假单胞菌的适应性和致病性很重要。在这里,我们验证了PqsE蛋白在QS中的核心作用,特别是其对调节因子RhlR的影响。这项研究挑战了铜绿假单胞菌中QS调节的传统教条,并通过确认RhlR是铜绿假单胞菌中的主要QS调节因子,理清了我们对传统QS电路理解中的松散环节。PqsE可能代表开发针对铜绿假单胞菌毒力的新控制方法的理想靶点。考虑到LasR缺陷型突变体经常出现,例如在慢性感染中,这一点尤为重要。