Suppr超能文献

具有局部高浓度电解质和高镍阴极的锂金属电池中的交叉效应

Crossover Effects in Lithium-Metal Batteries with a Localized High Concentration Electrolyte and High-Nickel Cathodes.

作者信息

Langdon Jayse, Manthiram Arumugam

机构信息

McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.

出版信息

Adv Mater. 2022 Oct;34(41):e2205188. doi: 10.1002/adma.202205188. Epub 2022 Sep 9.

Abstract

While crossover effects, such as transition-metal dissolution, are well-understood in lithium-ion batteries, there is a limited understanding of the effect of crossed-over chemical species in cells with oxide cathodes and lithium-metal anodes. In this work, the effects of cathode-to-anode and anode-to-cathode crossover are explored in cells with a high-nickel cathode, lithium-metal anode, and a localized high-concentration electrolyte (LHCE). Dramatic differences are found among cells; a lithium-metal anode paired with a high-nickel cathode has three times less solid-electrolyte interphase growth than a lithium-metal anode paired with lithium metal. Meanwhile, the cathode paired with lithium metal has 2-3 times higher capacity fade than the same cathode paired with graphite. Decomposition and crossover of the FSI salt is identified as the main source of these changes. The fluorine in the salt is first stripped off at the lithium-metal anode, and the remaining sulfur and nitrogen cross over to the cathode. Although the reduction in fluorine content harms the surface stability of the cathode, the lithium-metal anode benefits from the increased fluorine content. Because the lithium-metal anode is typically the bottleneck for cells with thin lithium, crossover is a major factor in the enhanced performance of lithium-metal batteries with LHCE.

摘要

虽然诸如过渡金属溶解等交叉效应在锂离子电池中已得到充分理解,但对于具有氧化物阴极和锂金属阳极的电池中交叉化学物质的影响了解有限。在这项工作中,研究了在具有高镍阴极、锂金属阳极和局部高浓度电解质(LHCE)的电池中,阴极到阳极和阳极到阴极交叉的影响。发现不同电池之间存在显著差异;与锂金属配对的高镍阴极相比,与锂金属配对的锂金属阳极的固体电解质界面生长减少了三倍。同时,与锂金属配对的阴极比与石墨配对的同一阴极的容量衰减高2至3倍。FSI盐的分解和交叉被确定为这些变化的主要来源。盐中的氟首先在锂金属阳极处被剥离,剩余的硫和氮交叉到阴极。尽管氟含量的降低损害了阴极的表面稳定性,但锂金属阳极却受益于氟含量的增加。由于锂金属阳极通常是薄锂电池的瓶颈,交叉是具有LHCE的锂金属电池性能增强的一个主要因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验