Gao Yuliang, Qiao Fahong, You Jingyuan, Ren Zengying, Li Nan, Zhang Kun, Shen Chao, Jin Ting, Xie Keyu
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China.
Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Shenzhen, 518057, People's Republic of China.
Nat Commun. 2022 Jan 10;13(1):5. doi: 10.1038/s41467-021-27429-8.
Extra-terrestrial explorations require electrochemical energy storage devices able to operate in gravity conditions different from those of planet earth. In this context, lithium (Li)-based batteries have not been fully investigated, especially cell formation and cycling performances under supergravity (i.e., gravity > 9.8 m s) conditions. To shed some light on these aspects, here, we investigate the behavior of non-aqueous Li metal cells under supergravity conditions. The physicochemical and electrochemical characterizations reveal that, distinctly from earth gravity conditions, smooth and dense Li metal depositions are obtained under supergravity during Li metal deposition on a Cu substrate. Moreover, supergravity allows the formation of an inorganic-rich solid electrolyte interphase (SEI) due to the strong interactions between Li and salt anions, which promote significant decomposition of the anions on the negative electrode surface. Tests in full Li metal pouch cell configuration (using LiNiCoMnO-based positive electrode and LiFSI-based electrolyte solution) also demonstrate the favorable effect of the supergravity in terms of deposition morphology and SEI composition and ability to carry out 200 cycles at 2 C (400 mA g) rate with a capacity retention of 96%.
外星探索需要能够在不同于地球重力条件下运行的电化学储能装置。在此背景下,基于锂(Li)的电池尚未得到充分研究,尤其是在超重力(即重力>9.8 m s)条件下的电池形成和循环性能。为了阐明这些方面,在此我们研究了非水锂金属电池在超重力条件下的行为。物理化学和电化学表征表明,与地球重力条件不同,在超重力条件下,锂金属在铜基板上沉积时可获得光滑致密的锂金属沉积物。此外,由于锂与盐阴离子之间的强相互作用,超重力有利于形成富含无机物的固体电解质界面(SEI),这促进了阴离子在负极表面的显著分解。全锂金属软包电池配置(使用基于LiNiCoMnO的正极和基于LiFSI的电解质溶液)的测试也证明了超重力在沉积形态、SEI组成方面的有利影响,以及在2 C(400 mA g)倍率下能够进行200次循环,容量保持率为96%。