Suppr超能文献

评估一种适应性、多模式干预措施,以减少埃塞俄比亚剖宫产术后感染:CLEAN-CS 聚类随机化阶梯式干预试验研究方案。

Evaluation of an adaptive, multimodal intervention to reduce postoperative infections following cesarean delivery in Ethiopia: study protocol of the CLEAN-CS cluster-randomized stepped wedge interventional trial.

机构信息

Department of Surgery, Addis Ababa University; Lifebox Foundation, Addis Ababa, Ethiopia.

Department of Obstetrics & Gynecology, St. Paul's Hospital Millennium Medical College; Ethiopian Society of Obstetricians and Gynecologists; Center for International Reproductive Health Training, Addis Ababa, Ethiopia.

出版信息

Trials. 2022 Aug 19;23(1):692. doi: 10.1186/s13063-022-06500-9.

Abstract

BACKGROUND

We previously developed and pilot tested Clean Cut, a program to prevent postoperative infections by improving compliance with the WHO Surgical Safety Checklist (SSC) and strengthening adherence to infection control practices. This protocol describes the CheckList Expansion for Antisepsis and iNfection Control in Cesarean Section (CLEAN-CS) trial evaluating our program's ability to reduce infections following CS and other obstetric and gynecological operations in Ethiopia.

METHODS/DESIGN: CLEAN-CS is a cluster-randomized stepped wedge interventional trial with five clusters (two hospitals per cluster). It aims to assess the impact of Clean Cut on six critical perioperative infection prevention standards including antiseptic practices, antibiotic administration, and routine SCC use. The trial involves baseline data collection followed by Clean Cut training and implementation in each cluster in randomized order. The intervention consists of (1) modifying and implementing the SSC to fit local practices, (2) process mapping each standard, (3) coupling data and processes with site-specific action plans for improvement, and (4) targeted training focused on process gaps. The primary outcome is 30-day CS infection rates; secondary outcomes include other patient-level complications and compliance with standards. Assuming baseline SSI incidence of 12%, an effect size of 25% absolute reduction, and the ability to recruit 80-90 patients per cluster per month, we require a sample of 8100 patients for significance. We will report our study according to CONSORT.

DISCUSSION

A cluster-randomized stepped wedge design is well-suited for evaluating this type of surgical safety program. The targeted standards are not in doubt, yet compliance is frequently difficult. Solutions are available and may be recognized by individuals, but teams dedicated to improvement are often lacking. Clean Cut was successfully piloted but requires a more rigorous methodological assessment. We seek to understand the qualities, characteristics, and resources needed to implement the program, the magnitude of effect on processes and outcomes, and to what degree it can enhance compliance with care standards. Challenges include a fraught social and political environment, pandemic travel restrictions, and a limited budget.

TRIAL REGISTRATION

ClinicalTrials.gov NCT04812522 (registered on March 23, 2021); Pan-African Clinical Trials Registry PACTR202108717887402 (registered on August 24, 2021).

摘要

背景

我们之前开发并试点了“Clean Cut”项目,旨在通过提高世卫组织手术安全检查表(SSC)的依从性和加强感染控制措施,预防术后感染。本方案描述了评估该项目降低剖宫产及其他产科和妇科手术术后感染能力的“CheckList Expansion for Antisepsis and iNfection Control in Cesarean Section(CLEAN-CS)”试验。

方法/设计:“Clean-CS”是一项基于群组的、 stepped wedge 型干预性试验,共包含 5 个群组(每个群组有 2 家医院)。旨在评估“Clean Cut”对 6 项关键性围手术期感染预防标准的影响,包括消毒措施、抗生素使用和常规 SCC 使用。试验采用基线数据收集、随后在每个群组中按随机顺序开展“Clean Cut”培训和实施的方式进行。该干预措施包括:(1)修改并实施适合当地实际的 SSC;(2)对每个标准进行流程映射;(3)将数据和流程与特定地点的改进行动计划相结合;(4)开展重点关注流程差距的培训。主要结局指标是 30 天剖宫产感染率;次要结局指标包括其他患者级并发症和标准依从性。假设基线 SSI 发生率为 12%,绝对减少 25%,每个群组每月可招募 80-90 名患者,我们需要 8100 名患者入组才能达到统计学意义。我们将根据 CONSORT 报告我们的研究结果。

讨论

群组随机 stepped wedge 设计非常适合评估此类手术安全项目。目标标准没有疑问,但通常难以遵守。已有解决方案,但可能被个人识别,但通常缺乏专门致力于改进的团队。“Clean Cut”已成功试点,但需要更严格的方法学评估。我们旨在了解实施该项目所需的素质、特征和资源,了解其对流程和结局的影响程度,以及它在多大程度上可以提高对护理标准的依从性。挑战包括复杂的社会和政治环境、大流行期间的旅行限制以及有限的预算。

试验注册

ClinicalTrials.gov NCT04812522(于 2021 年 3 月 23 日注册);Pan-African Clinical Trials Registry PACTR202108717887402(于 2021 年 8 月 24 日注册)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57fe/9389793/6549e0c91fb4/13063_2022_6500_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验