Suppr超能文献

预测身体成分和相对脂肪量是否可以替代身体质量指数和腰围来评估疾病风险?

Is predicted body-composition and relative fat mass an alternative to body-mass index and waist circumference for disease risk estimation?

机构信息

Department of Health Science and Technology, Aalborg University, Denmark.

Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark.

出版信息

Diabetes Metab Syndr. 2022 Sep;16(9):102590. doi: 10.1016/j.dsx.2022.102590. Epub 2022 Aug 9.

Abstract

BACKGROUND AND AIMS

New methods to estimate body-composition have recently been proposed, but their relation to diseases, such as diabetes and coronary heart disease, needs further investigation. The purpose of this study was to investigate the association between proposed prediction of body-composition (PBC); Relative Fat Mass (RFM), Body Mass Index (BMI), Waist Circumference (WC) and disease.

METHODS

In a cross-sectional cohort (NHANES) the association between the four body measures and diabetes, high blood pressure, coronary heart disease, cancer, arthritis, and hospitalization were assessed. A total of 13,348 people was included in this study. Receiver operating characteristic (ROC), Area Under Curve (AUC) and statistical testing were used to evaluate the differences.

RESULTS

PBC/RFM had significant higher AUC than BMI or WC for diabetes, high blood pressure, hospitalization, and arthritis. PBC had a significant higher AUC than RFM, BMI, WC for Cancer and coronary heart disease.

CONCLUSIONS

RFM and PBC could be a better indicator to distinguish amongst people with a risk of diseases compared to traditional measures such as BMI and WC. However, future studies need to investigate the longitudinal association between RFM, PBC and the risk of disease development to assess if these measures are better suited for risk-stratification.

摘要

背景和目的

最近提出了一些新的方法来估计身体成分,但它们与糖尿病和冠心病等疾病的关系仍需进一步研究。本研究旨在探讨提出的身体成分预测(PBC)、相对脂肪量(RFM)、体重指数(BMI)、腰围(WC)与疾病之间的关系。

方法

在一项横断面队列研究(NHANES)中,评估了这四种身体测量指标与糖尿病、高血压、冠心病、癌症、关节炎和住院治疗之间的关联。本研究共纳入了 13348 人。采用受试者工作特征曲线(ROC)、曲线下面积(AUC)和统计学检验来评估差异。

结果

PBC/RFM 对糖尿病、高血压、住院治疗和关节炎的 AUC 显著高于 BMI 或 WC。PBC 在癌症和冠心病方面的 AUC 显著高于 RFM、BMI 和 WC。

结论

与 BMI 和 WC 等传统指标相比,RFM 和 PBC 可以更好地作为区分具有疾病风险人群的指标。然而,未来的研究需要进一步探讨 RFM、PBC 与疾病发展风险之间的纵向关联,以评估这些指标是否更适合风险分层。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验