Zhang Xiao, Matras-Postolek Katarzyna, Yang Ping, Ping Jiang San
Faculty of Chemical Engineering and Technology, Cracow University of Technology, Krakow, Poland.
Faculty of Chemical Engineering and Technology, Cracow University of Technology, Krakow, Poland.
J Colloid Interface Sci. 2023 Apr 15;636:646-656. doi: 10.1016/j.jcis.2023.01.052. Epub 2023 Jan 13.
Construction of Z-scheme heterojunctions has been considered one superb method in promoting solar-assisted charge carrier separation of carbon-based materials to achieve efficient utilization of solar energy in hydrogen production and CO reduction. One interesting concept in nanofabrication that has become trend recent years is nanoarchitectonics. A heterostructure photocatalyst constructed based on the idea of nanoarchitectonics using the combination of g-CN, metal and an additional semiconducting nanocomposite is investigated in this paper. Z-scheme tungsten oxide incorporated copper modified graphitic carbon nitride (WO/Cu-g-CN) heterostructures are fabricated via immobilization of WO on Cu nanoparticles modified superior thin g-CN nanosheets. Mechano-chemical pre-reaction and a two-step high-temperature thermal polymerization process are the keys in attaining homogeneous distribution of Cu nanoparticles in g-CN nanosheets. The horizontal growth of homogeneously distributed WO nanobelts on Cu modified g-CN (Cu-g-CN) base via solvothermal synthesis is achieved. The photocatalytic performances of the heterostructures are evaluated through water splitting and CO photoreduction measurements in full solar spectrum irradiation condition. The presence of Cu nanoparticles in the composite system improves charge transport between g-CN and WO and thus enhances the photocatalytic performances (H generation and CO photoreduction) of the composite material, while the presence of WO nanocomposites enhances light absorption of the composite material in the near infrared range. The synthesized heterostructure with optimized WO to Cu-g-CN ratio and in case of no co-catalyst addition exhibits enhanced photocatalytic H evolution (4560 μmolgh) as well as excellent CO reduction rate (5.89 μmolgh for CO generation).
构建Z型异质结被认为是促进碳基材料太阳能辅助电荷载流子分离以实现太阳能在制氢和CO还原中高效利用的一种极佳方法。纳米制造中一个近年来成为趋势的有趣概念是纳米结构学。本文研究了一种基于纳米结构学理念构建的异质结构光催化剂,它使用了g-CN、金属和另一种半导体纳米复合材料的组合。通过将WO固定在铜纳米颗粒修饰的优质薄g-CN纳米片上,制备了Z型氧化钨掺杂铜修饰的石墨相氮化碳(WO/Cu-g-CN)异质结构。机械化学预反应和两步高温热聚合过程是使铜纳米颗粒在g-CN纳米片中均匀分布的关键。通过溶剂热合成实现了在铜修饰的g-CN(Cu-g-CN)基底上均匀分布的WO纳米带的横向生长。通过在全太阳光谱照射条件下的水分解和CO光还原测量来评估异质结构的光催化性能。复合体系中铜纳米颗粒的存在改善了g-CN和WO之间的电荷传输,从而提高了复合材料的光催化性能(产氢和CO光还原),而WO纳米复合材料的存在增强了复合材料在近红外范围内的光吸收。合成的具有优化的WO与Cu-g-CN比例且不添加共催化剂的异质结构表现出增强的光催化析氢性能(4560 μmolgh)以及优异的CO还原速率(CO生成速率为5.89 μmolgh)。