Suppr超能文献

一项真实世界银屑病登记处中银屑病患者发生银屑病关节炎风险的前瞻性队列研究。

Prospective cohort study of psoriatic arthritis risk in patients with psoriasis in a real-world psoriasis registry.

机构信息

Departments of Medicine/Rheumatology and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania.

CorEvitas, LLC (formerly known as Corrona, LLC), Waltham, Massachusetts.

出版信息

J Am Acad Dermatol. 2022 Dec;87(6):1303-1311. doi: 10.1016/j.jaad.2022.07.060. Epub 2022 Aug 17.

Abstract

BACKGROUND

The characteristics that predict the onset of psoriatic arthritis (PsA) among patients with psoriasis (PsO) may inform diagnosis and treatment.

OBJECTIVE

To develop a model to predict the 2-year risk of developing PsA among patients with PsO.

METHODS

This was a prospective cohort study of patients in the CorEvitas Psoriasis Registry without PsA at enrollment and with 24-month follow-up. Unregularized and regularized logistic regression models were developed and tested using descriptive variables to predict dermatologist-identified PsA at 24 months. Model performance was compared using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity.

RESULTS

A total of 1489 patients were included. Nine unique predictive models were developed and tested. The optimal model, including Psoriasis Epidemiology Screening Tool (PEST), body mass index (BMI), modified Rheumatic Disease Comorbidity Index, work status, alcohol use, and patient-reported fatigue, predicted the onset of PsA within 24 months (AUC = 68.9%, sensitivity = 82.9%, specificity = 48.8%). A parsimonious model including PEST and BMI had similar performance (AUC = 68.8%; sensitivity = 92.7%, specificity = 36.5%).

LIMITATIONS

PsA misclassification bias by dermatologists.

CONCLUSION

PEST and BMI were important factors in predicting the development of PsA in patients with PsO over 2 years and thereby foundational for future PsA risk model development.

摘要

背景

预测银屑病(PsO)患者发生银屑病关节炎(PsA)的特征可提示诊断和治疗。

目的

建立预测 PsO 患者发生 PsA 的 2 年风险的模型。

方法

这是一项前瞻性队列研究,纳入了 CorEvitas 银屑病登记处中入组时无 PsA 且随访 24 个月的患者。使用描述性变量开发并测试无规则和正则逻辑回归模型,以预测 24 个月时皮肤科医生诊断的 PsA。通过受试者工作特征曲线下面积(AUC)、敏感性和特异性比较模型性能。

结果

共纳入 1489 例患者。建立并测试了 9 个独特的预测模型。包括银屑病流行病学筛查工具(PEST)、体重指数(BMI)、改良风湿病合并症指数、工作状态、饮酒和患者报告的疲劳在内的最佳模型预测了 24 个月内发生 PsA 的情况(AUC=68.9%,敏感性=82.9%,特异性=48.8%)。包含 PEST 和 BMI 的简约模型也具有类似的性能(AUC=68.8%;敏感性=92.7%,特异性=36.5%)。

局限性

皮肤科医生对 PsA 的分类偏倚。

结论

PEST 和 BMI 是预测 2 年内 PsO 患者发生 PsA 的重要因素,是未来 PsA 风险模型开发的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验