CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
Redox Biol. 2022 Oct;56:102424. doi: 10.1016/j.redox.2022.102424. Epub 2022 Aug 10.
Deficits in mitochondrial function and redox deregulation have been attributed to Huntington's disease (HD), a genetic neurodegenerative disorder largely affecting the striatum. However, whether these changes occur in early stages of the disease and can be detected in vivo is still unclear. In the present study, we analysed changes in mitochondrial function and production of reactive oxygen species (ROS) at early stages and with disease progression. Studies were performed in vivo in human brain by PET using [Cu]-ATSM and ex vivo in human skin fibroblasts of premanifest and prodromal (Pre-M) and manifest HD carriers. In vivo brain [Cu]-ATSM PET in YAC128 transgenic mouse and striatal and cortical isolated mitochondria were assessed at presymptomatic (3 month-old, mo) and symptomatic (6-12 mo) stages. Pre-M HD carriers exhibited enhanced whole-brain (with exception of caudate) [Cu]-ATSM labelling, correlating with CAG repeat number. Fibroblasts from Pre-M showed enhanced basal and maximal respiration, proton leak and increased hydrogen peroxide (HO) levels, later progressing in manifest HD. Mitochondria from fibroblasts of Pre-M HD carriers also showed reduced circularity, while higher number of mitochondrial DNA copies correlated with maximal respiratory capacity. In vivo animal PET analysis showed increased accumulation of [Cu]-ATSM in YAC128 mouse striatum. YAC128 mouse (at 3 months) striatal isolated mitochondria exhibited a rise in basal and maximal mitochondrial respiration and in ATP production, and increased complex II and III activities. YAC128 mouse striatal mitochondria also showed enhanced mitochondrial HO levels and circularity, revealed by brain ultrastructure analysis, and defects in Ca handling, supporting increased striatal susceptibility. Data demonstrate both human and mouse mitochondrial overactivity and altered morphology at early HD stages, facilitating redox unbalance, the latter progressing with manifest disease.
线粒体功能缺陷和氧化还原失调与亨廷顿病(HD)有关,这是一种主要影响纹状体的遗传性神经退行性疾病。然而,这些变化是否发生在疾病的早期阶段,以及是否可以在体内检测到,目前尚不清楚。在本研究中,我们分析了在早期阶段和疾病进展过程中,线粒体功能和活性氧(ROS)产生的变化。研究采用 [Cu]-ATSM 正电子发射断层扫描(PET)在人体大脑中进行体内研究,在无症状和前驱期(Pre-M)和有症状(显型)HD 携带者的人皮肤成纤维细胞中进行体外研究。在 YAC128 转基因小鼠的未出现症状(3 月龄,mo)和出现症状(6-12 mo)阶段,评估了大脑 [Cu]-ATSM PET 和纹状体和皮质分离的线粒体。Pre-M HD 携带者的全脑(除尾状核外)[Cu]-ATSM 标记增加,与 CAG 重复数相关。Pre-M HD 携带者的成纤维细胞表现出基础呼吸和最大呼吸、质子泄漏和过氧化氢(HO)水平增加,随后在显型 HD 中进展。Pre-M HD 携带者成纤维细胞的线粒体也显示出圆形度降低,而较高的线粒体 DNA 拷贝数与最大呼吸能力相关。体内动物 PET 分析显示 YAC128 小鼠纹状体中 [Cu]-ATSM 的积累增加。YAC128 小鼠(3 个月)纹状体分离的线粒体表现出基础和最大线粒体呼吸、ATP 产生增加,以及复合物 II 和 III 活性增加。YAC128 小鼠纹状体线粒体也表现出增强的线粒体 HO 水平和圆形度,这通过大脑超微结构分析揭示,以及 Ca 处理缺陷,支持纹状体易感性增加。数据表明,在早期 HD 阶段,人类和小鼠的线粒体过度活跃和形态改变,导致氧化还原失衡,后者随着显性疾病的进展而进展。