Suppr超能文献

电定位的“祖传”神经机制为干扰回避反应的进化提供了一个基础。

'Ancestral' neural mechanisms of electrolocation suggest a substrate for the evolution of the jamming avoidance response.

作者信息

Rose G, Keller C, Heiligenberg W

出版信息

J Comp Physiol A. 1987 Apr;160(4):491-500. doi: 10.1007/BF00615082.

Abstract

The genus Sternopygus, believed to reflect ancestral traits of gymnotiform electric fish, is closely related to the more 'modern' genus Eigenmannia (Mago-Leccia 1978; Fink and Fink 1981). Sternopygus is the only known genus of electric fish that does not perform a jamming avoidance response (JAR) to minimize the potentially detrimental effects of signal interference between discharging neighbors (Bullock et al. 1972, 1975), and its ability to electrolocate objects is rather immune to jamming (Matsubara and Heiligenberg 1978). By studying the responses of midbrain neurons to stimulus regimes effective in eliciting the JAR in Eigenmannia, we found that Sternopygus has neurons capable of discriminating the sign of the difference frequency between interfering electric organ discharges (EODs). These 'sign-selective' neurons, which are believed to be important elements in the control of the JAR in Eigenmannia, may, therefore, fulfill a more general function in the detection of moving objects and conspecifics but could potentially be assembled for the evolution of a JAR in Sternopygus. The relative immunity to jamming in this genus may result, in part, from a stronger reliance upon the ampullary electrosensory system which operates in the DC and low-frequency range, outside the EOD spectrum of these fish.

摘要

裸背电鳗属被认为反映了裸背电鳗目电鱼的祖先特征,与更为“现代”的艾氏电鳗属密切相关(马戈 - 莱西亚,1978年;芬克和芬克,1981年)。裸背电鳗是已知的唯一一种电鱼,它不会执行干扰避免反应(JAR)来将相邻放电个体之间信号干扰的潜在有害影响降至最低(布洛克等人,1972年、1975年),并且其对物体进行电定位的能力相当不受干扰影响(松原和海利根贝格,1978年)。通过研究中脑神经元对在艾氏电鳗中有效引发干扰避免反应的刺激模式的反应,我们发现裸背电鳗具有能够区分干扰性电器官放电(EOD)之间差频符号的神经元。这些“符号选择性”神经元被认为是艾氏电鳗中干扰避免反应控制的重要元件,因此可能在检测移动物体和同种个体方面发挥更普遍的功能,但也有可能为裸背电鳗中干扰避免反应的进化而组合起来。该属对干扰的相对免疫可能部分源于对壶腹电感觉系统更强的依赖,该系统在直流和低频范围内运行,处于这些鱼类电器官放电频谱之外。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验