Suppr超能文献

基于深度学习的数据增强和模型融合在自动心律失常识别和分类算法中的应用。

Deep Learning-Based Data Augmentation and Model Fusion for Automatic Arrhythmia Identification and Classification Algorithms.

机构信息

Xiamen University of Technology, School of Computer and Information Engineering, Xiamen 361024, China.

Xiamen University of Technology, School of Software Engineering, Xiamen 361024, China.

出版信息

Comput Intell Neurosci. 2022 Aug 11;2022:1577778. doi: 10.1155/2022/1577778. eCollection 2022.

Abstract

Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely applied for arrhythmia detection with great success. However, the lack of labeled ECG data and low classification accuracy can have a significant impact on the overall effectiveness of a classification algorithm. In order to better apply deep learning methods to arrhythmia classification, in this study, feature extraction and classification strategy based on generative adversarial network data augmentation and model fusion are proposed to address these problems. First, the arrhythmia sparse data is augmented by generative adversarial networks. Then, aiming at the identification of different types of arrhythmias in long-term ECG, a spatial information fusion model based on ResNet and a temporal information fusion model based on BiLSTM are proposed. The model effectively fuses the location information of the nearest neighbors through the local feature extraction part of the generated ECG feature map and obtains the correlation of the global features by autonomous learning in multiple spaces through the BiLSTM network in the part of the global feature extraction. In addition, an attention mechanism is introduced to enhance the features of arrhythmia-type signal segments, and this mechanism can effectively focus on the extraction of key information to form a feature vector for final classification. Finally, it is validated by the enhanced MIT-BIH arrhythmia database. The experimental results demonstrate that the proposed classification technique enhances arrhythmia diagnostic accuracy by 99.4%, and the algorithm has high recognition performance and clinical value.

摘要

基于心电图的自动心律失常检测对于早期心脏病的预防和诊断至关重要。最近,深度学习算法已被广泛应用于心律失常检测,并取得了巨大成功。然而,缺乏标记的心电图数据和低分类准确性会对分类算法的整体效果产生重大影响。为了更好地将深度学习方法应用于心律失常分类,本研究提出了基于生成对抗网络数据增强和模型融合的特征提取和分类策略,以解决这些问题。首先,使用生成对抗网络对心律失常稀疏数据进行扩充。然后,针对长期心电图中不同类型心律失常的识别问题,提出了基于 ResNet 的空间信息融合模型和基于 BiLSTM 的时间信息融合模型。该模型通过生成的 ECG 特征图的局部特征提取部分,有效融合了最近邻的位置信息,并通过 BiLSTM 网络在全局特征提取部分自主学习,获得全局特征的相关性。此外,引入了注意力机制来增强心律失常型信号段的特征,该机制可以有效地关注关键信息的提取,形成最终分类的特征向量。最后,在增强的 MIT-BIH 心律失常数据库上进行了验证。实验结果表明,所提出的分类技术可将心律失常诊断准确性提高 99.4%,该算法具有较高的识别性能和临床价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74e/9388256/b54da089ffac/CIN2022-1577778.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验