Li Hongqiang, Yuan Danyang, Wang Youxi, Cui Dianyin, Cao Lu
School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
Tianjin Chest Hospital, Tianjin 300222, China.
Sensors (Basel). 2016 Oct 20;16(10):1744. doi: 10.3390/s16101744.
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.
心律失常的自动识别在心脏病诊断中尤为重要。本研究提出了一种基于多域特征提取的心电图(ECG)识别系统,用于对心电图搏动进行分类。应用一种改进的小波阈值方法对ECG信号进行预处理,以去除噪声干扰。提出了一种新颖的多域特征提取方法;该方法在非线性特征提取中采用核独立成分分析,并使用离散小波变换提取频域特征。所提出的系统利用经遗传算法优化的支持向量机分类器来识别不同类型的心跳。构建了一个ECG采集实验平台,在该平台上收集ECG搏动作为用于分类的ECG数据,以证明该系统在ECG搏动分类中的有效性。该系统应用于MIT - BIH心律失常数据库时,实现了98.8%的高分类准确率。基于ECG采集实验平台的实验结果表明,该系统获得了令人满意的97.3%的分类准确率,并且能够有效地对ECG搏动进行分类,以自动识别心律失常。