Suppr超能文献

基于深度双向 LSTM 网络模型的新型小波序列用于 ECG 信号分类。

A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification.

机构信息

Computer Engineering Department, Engineering Faculty, Munzur University, Tunceli, Turkey.

出版信息

Comput Biol Med. 2018 May 1;96:189-202. doi: 10.1016/j.compbiomed.2018.03.016. Epub 2018 Mar 28.

Abstract

Long-short term memory networks (LSTMs), which have recently emerged in sequential data analysis, are the most widely used type of recurrent neural networks (RNNs) architecture. Progress on the topic of deep learning includes successful adaptations of deep versions of these architectures. In this study, a new model for deep bidirectional LSTM network-based wavelet sequences called DBLSTM-WS was proposed for classifying electrocardiogram (ECG) signals. For this purpose, a new wavelet-based layer is implemented to generate ECG signal sequences. The ECG signals were decomposed into frequency sub-bands at different scales in this layer. These sub-bands are used as sequences for the input of LSTM networks. New network models that include unidirectional (ULSTM) and bidirectional (BLSTM) structures are designed for performance comparisons. Experimental studies have been performed for five different types of heartbeats obtained from the MIT-BIH arrhythmia database. These five types are Normal Sinus Rhythm (NSR), Ventricular Premature Contraction (VPC), Paced Beat (PB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The results show that the DBLSTM-WS model gives a high recognition performance of 99.39%. It has been observed that the wavelet-based layer proposed in the study significantly improves the recognition performance of conventional networks. This proposed network structure is an important approach that can be applied to similar signal processing problems.

摘要

长短时记忆网络(LSTM)是最近在序列数据分析中出现的,是最广泛使用的递归神经网络(RNN)架构类型。深度学习领域的进展包括对这些架构的深度版本的成功改编。在这项研究中,提出了一种新的基于深度双向 LSTM 网络的小波序列模型,称为 DBLSTM-WS,用于对心电图(ECG)信号进行分类。为此,实现了一个新的基于小波的层,用于生成 ECG 信号序列。在该层中,将 ECG 信号分解为不同尺度的频带子带。这些子带用作 LSTM 网络输入的序列。设计了新的网络模型,包括单向(ULSTM)和双向(BLSTM)结构,用于性能比较。已经从 MIT-BIH 心律失常数据库中获得的五种不同类型的心跳进行了实验研究。这五种类型是正常窦性节律(NSR)、室性早搏(VPC)、起搏节拍(PB)、左束支传导阻滞(LBBB)和右束支传导阻滞(RBBB)。结果表明,DBLSTM-WS 模型的识别性能高达 99.39%。研究中提出的基于小波的层显著提高了传统网络的识别性能。所提出的网络结构是一种可应用于类似信号处理问题的重要方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验