Suppr超能文献

用于CTG信号分类的增强集成学习

BOOST ENSEMBLE LEARNING FOR CLASSIFICATION OF CTG SIGNALS.

作者信息

Ajirak Marzieh, Heiselman Cassandra, Quirk J Gerald, Djurić Petar M

机构信息

Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA.

Department of Obstetrics, Gynecology and Reproductive Medicine, Stony Brook University, Stony Brook, NY 11794, USA.

出版信息

Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:1316-1320. doi: 10.1109/icassp43922.2022.9746503. Epub 2022 Apr 27.

Abstract

During the process of childbirth, fetal distress caused by hypoxia can lead to various abnormalities. Cardiotocography (CTG), which consists of continuous recording of the fetal heart rate (FHR) and uterine contractions (UC), is routinely used for classifying the fetuses as hypoxic or non-hypoxic. In practice, we face highly imbalanced data, where the hypoxic fetuses are significantly underrepresented. We propose to address this problem by boost ensemble learning, where for learning, we use the distribution of classification error over the dataset. We then iteratively select the most informative majority data samples according to this distribution. In our work, in addition to addressing the imbalanced problem, we also experimented with features that are not commonly used in obstetrics. We extracted a large number of statistical features of fetal heart tracings and uterine activity signals and used only the most informative ones. For classification, we implemented several methods: Random Forest, AdaBoost, -Nearest Neighbors, Support Vector Machine, and Decision Trees. The paper provides a comparison in the performance of these methods on fetal heart rate tracings available from a public database. Our results show that most applied methods improved their performances considerably when boost ensemble was used.

摘要

在分娩过程中,缺氧引起的胎儿窘迫会导致各种异常情况。胎心监护(CTG),包括对胎儿心率(FHR)和子宫收缩(UC)进行连续记录,通常用于将胎儿分类为缺氧或非缺氧。在实际操作中,我们面临着高度不平衡的数据,其中缺氧胎儿的数量明显较少。我们建议通过提升集成学习来解决这个问题,即在学习过程中,我们使用数据集上的分类误差分布。然后根据这个分布迭代地选择最具信息性的多数数据样本。在我们的工作中,除了解决不平衡问题,我们还对产科中不常用的特征进行了实验。我们提取了大量胎儿心率描记图和子宫活动信号的统计特征,并只使用最具信息性的特征。对于分类,我们实现了几种方法:随机森林、AdaBoost、K近邻、支持向量机和决策树。本文对这些方法在一个公共数据库提供的胎儿心率描记图上的性能进行了比较。我们的结果表明,当使用提升集成时,大多数应用方法的性能都有了显著提高。

相似文献

1
BOOST ENSEMBLE LEARNING FOR CLASSIFICATION OF CTG SIGNALS.
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:1316-1320. doi: 10.1109/icassp43922.2022.9746503. Epub 2022 Apr 27.
2
A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization.
Interdiscip Sci. 2024 Dec;16(4):882-906. doi: 10.1007/s12539-024-00647-6. Epub 2024 Oct 5.
3
eCTG: an automatic procedure to extract digital cardiotocographic signals from digital images.
Comput Methods Programs Biomed. 2018 Mar;156:133-139. doi: 10.1016/j.cmpb.2017.12.030. Epub 2018 Jan 2.
5
CTG Analyzer: A graphical user interface for cardiotocography.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:2606-2609. doi: 10.1109/EMBC.2017.8037391.
6
Developments in CTG analysis.
Baillieres Clin Obstet Gynaecol. 1996 Jun;10(2):185-209. doi: 10.1016/s0950-3552(96)80033-2.
7
Cardiotocography signal abnormality classification using time-frequency features and Ensemble Cost-sensitive SVM classifier.
Comput Biol Med. 2021 Mar;130:104218. doi: 10.1016/j.compbiomed.2021.104218. Epub 2021 Jan 14.
8
Annotation dataset of the cardiotocographic recordings constituting the "CTU-CHB intra-partum CTG database".
Data Brief. 2020 May 19;31:105690. doi: 10.1016/j.dib.2020.105690. eCollection 2020 Aug.
9
Prediction of intrapartum fetal hypoxia considering feature selection algorithms and machine learning models.
Health Inf Sci Syst. 2019 Aug 20;7(1):17. doi: 10.1007/s13755-019-0079-z. eCollection 2019 Dec.
10
Optimizing fetal health prediction: Ensemble modeling with fusion of feature selection and extraction techniques for cardiotocography data.
Comput Biol Chem. 2023 Dec;107:107973. doi: 10.1016/j.compbiolchem.2023.107973. Epub 2023 Oct 31.

引用本文的文献

1
Time-Dependent Association Between Cardiotocographic Features and Hypoxic-Ischemic Encephalopathy.
IEEE Access. 2025;13:87562-87581. doi: 10.1109/access.2025.3570371. Epub 2025 May 15.

本文引用的文献

1
DeepFHR: intelligent prediction of fetal Acidemia using fetal heart rate signals based on convolutional neural network.
BMC Med Inform Decis Mak. 2019 Dec 30;19(1):286. doi: 10.1186/s12911-019-1007-5.
2
Deep Learning for Continuous Electronic Fetal Monitoring in Labor.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5866-5869. doi: 10.1109/EMBC.2018.8513625.
4
Investigating pH based evaluation of fetal heart rate (FHR) recordings.
Health Technol (Berl). 2017;7(2):241-254. doi: 10.1007/s12553-017-0201-7. Epub 2017 Jul 4.
6
Agreement on intrapartum cardiotocogram recordings between expert obstetricians.
J Eval Clin Pract. 2015 Aug;21(4):694-702. doi: 10.1111/jep.12368. Epub 2015 May 26.
7
Fetal heart rate monitoring.
Semin Fetal Neonatal Med. 2015 Jun;20(3):144-8. doi: 10.1016/j.siny.2015.02.002. Epub 2015 Mar 11.
8
Open access intrapartum CTG database.
BMC Pregnancy Childbirth. 2014 Jan 13;14:16. doi: 10.1186/1471-2393-14-16.
9
Electronic fetal monitoring: past, present, and future.
Clin Perinatol. 2011 Mar;38(1):127-42, vii. doi: 10.1016/j.clp.2010.12.002.
10
ST analysis of fetal electrocardiography in labor.
Semin Fetal Neonatal Med. 2011 Feb;16(1):29-35. doi: 10.1016/j.siny.2010.09.004. Epub 2010 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验