Jia Gaoshuai, Deng Zhi, Ni Dixing, Ji Zhaoran, Chen Diancheng, Zhang Xinxin, Wang Tao, Li Shuai, Zhao Yusheng
Department of Physics and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China.
21C Innovation Laboratory, Contemporary Amperex Technology Ltd. (CATL), Ningde, China.
Front Chem. 2022 Aug 3;10:952875. doi: 10.3389/fchem.2022.952875. eCollection 2022.
All-solid-state lithium batteries (ASSLBs) have attracted much attention owing to their high safety and energy density compared to conventional organic electrolytes. However, the interfaces between solid-state electrolytes and electrodes retain some knotty problems regarding compatibility. Among the various SSEs investigated in recent years, halide SSEs exhibit relatively good interfacial compatibility. The temperature-dependent interfacial compatibility of halide SSEs in solid-state batteries is investigated by thermal analysis using simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC) and X-ray diffraction (XRD). Halide SSEs, including rock-salt-type LiInCl and anti-perovskite-type LiOHCl, show good thermal stability with oxides LiCoO, LiMnO, and LiTiO up to 320 °C. Moreover, anti-perovskite-type LiOHCl shows a chemical reactivity with other battery materials (eg., LiFePO, LiNiCoMnO, Si-C, and LiAlTi(PO)) at 320°C, which reaches the melting point of LiOHCl. It indicated that LiOHCl has relatively high chemical reactivity after melting. In contrast, rock-salt-type LiInCl shows higher stability and interfacial compatibility. This work delivers insights into the selection of suitable battery materials with good compatibility for ASSLBs.
与传统有机电解质相比,全固态锂电池(ASSLBs)因其高安全性和能量密度而备受关注。然而,固态电解质与电极之间的界面在兼容性方面仍存在一些棘手问题。在近年来研究的各种固态电解质中,卤化物固态电解质表现出相对较好的界面兼容性。通过使用同步热重分析和差示扫描量热法(TG-DSC)以及X射线衍射(XRD)的热分析,研究了固态电池中卤化物固态电解质与温度相关的界面兼容性。包括岩盐型LiInCl和反钙钛矿型LiOHCl在内的卤化物固态电解质,在高达320°C的温度下与LiCoO、LiMnO和LiTiO等氧化物表现出良好的热稳定性。此外,反钙钛矿型LiOHCl在320°C时与其他电池材料(例如LiFePO、LiNiCoMnO、Si-C和LiAlTi(PO))发生化学反应,该温度达到LiOHCl的熔点。这表明LiOHCl在熔化后具有相对较高的化学反应活性。相比之下,岩盐型LiInCl表现出更高的稳定性和界面兼容性。这项工作为选择适用于全固态锂电池且具有良好兼容性的电池材料提供了见解。