Suppr超能文献

用于全固态电池的金属卤化物超离子导体

Metal Halide Superionic Conductors for All-Solid-State Batteries.

作者信息

Liang Jianwen, Li Xiaona, Adair Keegan R, Sun Xueliang

机构信息

Department of Mechanical & Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada.

出版信息

Acc Chem Res. 2021 Feb 16;54(4):1023-1033. doi: 10.1021/acs.accounts.0c00762. Epub 2021 Jan 29.

Abstract

ConspectusRechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The development of solid-state electrolytes (SSEs), which are key materials for ASSLBs, is therefore one of the most important subjects in modern energy storage chemistry. Various types of electrolytes such as polymer-, oxide-, and sulfide-based SSEs have been developed to date and the discovery of new superionic conductors is still ongoing. Metal-halide SSEs (Li-M-X, where M is a metal element and X is a halogen) are emerging as new candidates with a number of attractive properties and advantages such as wide electrochemical stability windows (0.36-6.71 V vs Li/Li) and better chemical stability toward cathode materials compared to other SSEs. Furthermore, some of the metal-halide SSEs (such as the LiInCl developed by our group) can be directly synthesized at large scales in a water solvent, removing the need for special apparatus or handling in an inert atmosphere. Based on the recent advances, herein we focus on the topic of metal-halide SSEs, aiming to provide a guidance toward further development of novel halide SSEs and push them forward to meet the multiple requirements of energy storage devices.In this Account, we describe our recent progress in developing metal halide SSEs and focus on some newly reported findings based on state-of-the-art publications on this topic. A discussion on the structure of metal-halide SSEs will be first explored. Subsequently, we will illustrate the effective approaches to enhance the ionic conductivities of metal halide SSEs including the effect of anion sublattice framework, the regulation of site occupation and disorder, and defect engineering. Specifically, we demonstrated that proper structural framework, balanced Li/vacancy concentration, and reduced blocking effect can promote fast Li migration for metal halide SSEs. Moreover, humidity stability and degradation chemistry of metal halide SSEs have been summarized for the first time. Some examples of the application of metal halide SSEs with stability toward humidity have been demonstrated. Direct synthesis of halide SSEs on cathode materials by the water-mediated route has been used to eliminate the interfacial challenges of ASSLBs and has been shown to act as an interfacial modifier for high-performance all-solid-state Li-O batteries. Taken together, this Account on metal halide SSEs will provide an insightful perspective over the recent development and future research directions that can lead to advanced electrolytes.

摘要

综述

可充电全固态锂电池(ASSLBs)被认为是下一代电化学储能系统。因此,作为ASSLBs关键材料的固态电解质(SSEs)的开发是现代储能化学中最重要的课题之一。迄今为止,已开发出各种类型的电解质,如基于聚合物、氧化物和硫化物的SSEs,并且新的超离子导体的发现仍在进行中。金属卤化物SSEs(Li-M-X,其中M是金属元素,X是卤素)正作为新的候选材料崭露头角,具有许多吸引人的特性和优势,如宽电化学稳定窗口(相对于Li/Li为0.36 - 6.71 V)以及与其他SSEs相比对阴极材料具有更好的化学稳定性。此外,一些金属卤化物SSEs(如我们团队开发的LiInCl)可以在水溶剂中大规模直接合成,无需特殊设备或在惰性气氛中进行处理。基于最近的进展,在此我们聚焦于金属卤化物SSEs这一主题,旨在为新型卤化物SSEs的进一步发展提供指导,并推动它们满足储能设备的多种要求。

在本综述中,我们描述了我们在开发金属卤化物SSEs方面的最新进展,并基于关于该主题的最新出版物重点介绍了一些新报道的发现。首先将探讨金属卤化物SSEs的结构。随后,我们将阐述提高金属卤化物SSEs离子电导率的有效方法,包括阴离子亚晶格框架的影响、位点占据和无序的调控以及缺陷工程。具体而言,我们证明了合适的结构框架、平衡的Li/空位浓度以及降低的阻挡效应可以促进金属卤化物SSEs中Li的快速迁移。此外,首次总结了金属卤化物SSEs的湿度稳定性和降解化学。展示了一些对湿度具有稳定性的金属卤化物SSEs的应用实例。通过水介导的途径在阴极材料上直接合成卤化物SSEs已被用于消除ASSLBs的界面挑战,并已被证明可作为高性能全固态锂氧电池的界面改性剂。综上所述,本关于金属卤化物SSEs的综述将对近期的发展以及能够导向先进电解质的未来研究方向提供深刻的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验