Luo Xuming, Cai Dan, Wang Xiuli, Xia Xinhui, Gu Changdong, Tu Jiangping
State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
ACS Appl Mater Interfaces. 2022 Jul 6;14(26):29844-29855. doi: 10.1021/acsami.2c06216. Epub 2022 Jun 22.
Halide electrolytes are rising stars among inorganic solid-state electrolytes due to their high ionic conductivity and good compatibility with high-voltage electrodes. However, their traditional synthesis methods including ball-milling annealing are usually energy-intensive and time-consuming compared with liquid-mediated routes. What's more, the only method in aqueous solution is not perfect considering detrimental effect of trace water for battery performances. Here, we propose a novel ethanol-mediated synthesis route for superionic LiInCl electrolyte via energy-friendly dissolution and post-treatment. The organics in ethanol-mediated precursor disappear in form of light gas during post-treatment. And LiInCl with best thermal stability and ionic conductivity (0.79 mS cm, 20 °C) can be successfully prepared after postheating for 3 h at 200 °C. Besides, it is also found that the ionic conductivity of LiInCl is positively correlated with peak intensity ratio of (131) plane/(001) plane since crystal plane and preferred orientation can directly affect polyhedrons through which lithium ions migrate in crystalline conductors. The assembled LiNiCoMnO/LiInCl/LiGePS/Li-In cell presents high initial charge capacity of 174.8 mAh g at 0.05 C and a good rate performance of 122.9 mAh g at 1 C. Especially, the retention rate of charge capacity can reach 94.8% after 200 cycles. The ethanol-mediated synthesized LiInCl is a novel promising electrolyte which can be coupled with high-voltage cathode for the application of all-solid-state lithium-metal batteries.
卤化物电解质因其高离子电导率以及与高压电极的良好兼容性,成为无机固态电解质中的后起之秀。然而,与液相介导法相比,其传统合成方法(包括球磨退火)通常能耗高且耗时。此外,考虑到痕量水对电池性能的不利影响,水溶液中的唯一方法并不完美。在此,我们通过能量友好型溶解和后处理,提出了一种用于超离子LiInCl电解质的新型乙醇介导合成路线。乙醇介导前驱体中的有机物在后处理过程中以轻质气体的形式消失。在200℃下后加热3小时后,可成功制备出具有最佳热稳定性和离子电导率(20℃下为0.79 mS cm)的LiInCl。此外,还发现LiInCl的离子电导率与(131)面/(001)面的峰强度比呈正相关,因为晶面和择优取向可直接影响锂离子在晶体导体中迁移所通过的多面体。组装的LiNiCoMnO/LiInCl/LiGePS/Li-In电池在0.05 C时具有174.8 mAh g的高初始充电容量,在1 C时具有122.9 mAh g的良好倍率性能。特别是,在200次循环后,充电容量保持率可达94.8%。乙醇介导合成的LiInCl是一种新型且有前景的电解质,可与高压正极耦合用于全固态锂金属电池的应用。