Suppr超能文献

利用医疗保健系统数据识别高危血脂异常患者。

Leveraging Healthcare System Data to Identify High-Risk Dyslipidemia Patients.

机构信息

Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA.

Division of Cardiology, Medstar Georgetown University Hospital-Washington Hospital Center, Washington, DC, USA.

出版信息

Curr Cardiol Rep. 2022 Oct;24(10):1387-1396. doi: 10.1007/s11886-022-01767-5. Epub 2022 Aug 22.

Abstract

PURPOSE OF REVIEW

While randomized controlled trials have historically served as the gold standard for shaping guideline recommendations, real-world data are increasingly being used to inform clinical decision-making. We describe ways in which healthcare systems are generating real-world data related to dyslipidemia and how these data are being leveraged to improve patient care.

RECENT FINDINGS

The electronic medical record has emerged as a major source of clinical data, which alongside claims and pharmacy dispending data is enabling healthcare systems the ability to identify care gaps (underdiagnosis and undertreatment) in patients with dyslipidemia. Availability of this data also allows healthcare systems the ability to test and deliver interventions at the point-of-care. Real-world data possess great potential as a complement to randomized controlled trials. Healthcare systems are uniquely positioned to not only define care gaps and areas of opportunity, but to also to leverage tools (e.g., clinical decision support, case identification) aimed at closing them.

摘要

目的综述

虽然随机对照试验历来是制定指南建议的金标准,但越来越多的实际数据正被用于为临床决策提供信息。我们描述了医疗系统生成与血脂异常相关的真实世界数据的方法,以及如何利用这些数据来改善患者的护理。

最近的发现

电子病历已成为临床数据的主要来源,加上索赔和配药数据,使医疗系统能够识别血脂异常患者的护理缺口(诊断不足和治疗不足)。这些数据的可用性还使医疗系统能够在护理点进行测试和提供干预措施。真实世界的数据具有作为随机对照试验的补充的巨大潜力。医疗系统不仅能够确定护理差距和机会领域,而且还能够利用旨在缩小这些差距的工具(例如,临床决策支持、病例识别)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验