通过整合体外药物反应测定和药物蛋白谱分析推断肿瘤特异性癌症相关性。

Inferring tumor-specific cancer dependencies through integrating ex vivo drug response assays and drug-protein profiling.

机构信息

Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.

Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.

出版信息

PLoS Comput Biol. 2022 Aug 22;18(8):e1010438. doi: 10.1371/journal.pcbi.1010438. eCollection 2022 Aug.

Abstract

The development of cancer therapies may be improved by the discovery of tumor-specific molecular dependencies. The requisite tools include genetic and chemical perturbations, each with its strengths and limitations. Chemical perturbations can be readily applied to primary cancer samples at large scale, but mechanistic understanding of hits and further pharmaceutical development is often complicated by the fact that a chemical compound has affinities to multiple proteins. To computationally infer specific molecular dependencies of individual cancers from their ex vivo drug sensitivity profiles, we developed a mathematical model that deconvolutes these data using measurements of protein-drug affinity profiles. Through integrating a drug-kinase profiling dataset and several drug response datasets, our method, DepInfeR, correctly identified known protein kinase dependencies, including the EGFR dependence of HER2+ breast cancer cell lines, the FLT3 dependence of acute myeloid leukemia (AML) with FLT3-ITD mutations and the differential dependencies on the B-cell receptor pathway in the two major subtypes of chronic lymphocytic leukemia (CLL). Furthermore, our method uncovered new subgroup-specific dependencies, including a previously unreported dependence of high-risk CLL on Checkpoint kinase 1 (CHEK1). The method also produced a detailed map of the kinase dependencies in a heterogeneous set of 117 CLL samples. The ability to deconvolute polypharmacological phenotypes into underlying causal molecular dependencies should increase the utility of high-throughput drug response assays for functional precision oncology.

摘要

通过发现肿瘤特异性分子依赖性,癌症疗法的发展可能会得到改善。必要的工具包括遗传和化学扰动,每种方法都有其优点和局限性。化学扰动可以很容易地应用于大规模的原发性癌症样本,但由于化学化合物对多种蛋白质具有亲和力,因此对命中的机制理解和进一步的药物开发通常会变得复杂。为了从体外药物敏感性谱推断个体癌症的特定分子依赖性,我们开发了一种数学模型,该模型使用蛋白质-药物亲和力谱的测量来对这些数据进行反卷积。通过整合一个药物激酶分析数据集和几个药物反应数据集,我们的方法 DepInfeR 正确地识别了已知的蛋白激酶依赖性,包括 HER2+乳腺癌细胞系的 EGFR 依赖性、FLT3-ITD 突变的急性髓系白血病 (AML)的 FLT3 依赖性以及两种主要慢性淋巴细胞白血病(CLL)亚型中 B 细胞受体途径的差异依赖性。此外,我们的方法还揭示了新的亚组特异性依赖性,包括先前未报道的高风险 CLL 对检查点激酶 1 (CHEK1) 的依赖性。该方法还绘制了 117 个 CLL 样本中异构集合中激酶依赖性的详细图谱。将多药理学表型分解为潜在的因果分子依赖性的能力应该会提高高通量药物反应测定在功能精准肿瘤学中的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815c/9436053/f7cdd880c88e/pcbi.1010438.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索