Department of Statistics, University of Washington, Seattle, WA 98195.
Department of Sociology, University of Washington, Seattle, WA 98195.
Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2203822119. doi: 10.1073/pnas.2203822119. Epub 2022 Aug 22.
We propose a method for forecasting global human migration flows. A Bayesian hierarchical model is used to make probabilistic projections of the 39,800 bilateral migration flows among the 200 most populous countries. We generate out-of-sample forecasts for all bilateral flows for the 2015 to 2020 period, using models fitted to bilateral migration flows for five 5-y periods from 1990 to 1995 through 2010 to 2015. We find that the model produces well-calibrated out-of-sample forecasts of bilateral flows, as well as total country-level inflows, outflows, and net flows. The mean absolute error decreased by 61% using our method, compared to a leading model of international migration. Out-of-sample analysis indicated that simple methods for forecasting migration flows offered accurate projections of bilateral migration flows in the near term. Our method matched or improved on the out-of-sample performance using these simple deterministic alternatives, while also accurately assessing uncertainty. We integrate the migration flow forecasting model into a fully probabilistic population projection model to generate bilateral migration flow forecasts by age and sex for all flows from 2020 to 2025 through 2040 to 2045.
我们提出了一种预测全球人口迁移流的方法。该方法采用贝叶斯层次模型,对 200 个人口最多的国家之间的 39800 对双边迁移流进行概率预测。我们使用从 1990 年到 1995 年、2010 年到 2015 年的五个 5 年期间的双边迁移流拟合模型,对 2015 年到 2020 年期间的所有双边迁移流进行了样本外预测。我们发现,该模型对双边迁移流以及国家层面的总流入、流出和净流量进行了很好的校准样本外预测。与国际移民的一个领先模型相比,我们的方法将双边迁移流的样本外平均绝对误差降低了 61%。样本外分析表明,迁移流预测的简单方法能够准确预测近期双边迁移流。我们的方法与这些简单的确定性替代方法的样本外表现相匹配或有所改进,同时也准确评估了不确定性。我们将迁移流预测模型集成到一个完全概率人口预测模型中,以生成 2020 年至 2025 年、2040 年至 2045 年期间所有双边迁移流的按年龄和性别细分的双边迁移流预测。