Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2211310119. doi: 10.1073/pnas.2211310119. Epub 2022 Aug 22.
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Astrocytes are the most abundant glial cells in the CNS, and their dysfunction contributes to the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis (EAE). Recent advances highlight the pivotal role of cellular metabolism in programming immune responses. However, the underlying immunometabolic mechanisms that drive astrocyte pathogenicity remain elusive. Nicotinamide adenine dinucleotide (NAD) is a vital coenzyme involved in cellular redox reactions and a substrate for NAD-dependent enzymes. Cellular NAD levels are dynamically controlled by synthesis and degradation, and dysregulation of this balance has been associated with inflammation and disease. Here, we demonstrate that cell-autonomous generation of NAD via the salvage pathway regulates astrocyte immune function. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in the salvage pathway, results in depletion of NAD, inhibits oxidative phosphorylation, and limits astrocyte inflammatory potential. We identified CD38 as the main NADase up-regulated in reactive mouse and human astrocytes in models of neuroinflammation and MS. Genetic or pharmacological blockade of astrocyte CD38 activity augmented NAD levels, suppressed proinflammatory transcriptional reprogramming, impaired chemotactic potential to inflammatory monocytes, and ameliorated EAE. We found that CD38 activity is mediated via calcineurin/NFAT signaling in mouse and human reactive astrocytes. Thus, NAMPT-NAD-CD38 circuitry in astrocytes controls their ability to meet their energy demands and drives the expression of proinflammatory transcriptional modules, contributing to CNS pathology in EAE and, potentially, MS. Our results identify candidate therapeutic targets in MS.
多发性硬化症(MS)是一种中枢神经系统(CNS)的慢性炎症性疾病。星形胶质细胞是 CNS 中最丰富的神经胶质细胞,其功能障碍导致 MS 及其动物模型实验性自身免疫性脑脊髓炎(EAE)的发病机制。最近的进展强调了细胞代谢在编程免疫反应中的关键作用。然而,驱动星形胶质细胞致病性的潜在免疫代谢机制仍不清楚。烟酰胺腺嘌呤二核苷酸(NAD)是一种重要的辅酶,参与细胞氧化还原反应,也是 NAD 依赖性酶的底物。细胞 NAD 水平通过合成和降解动态控制,这种平衡的失调与炎症和疾病有关。在这里,我们证明通过补救途径细胞自主产生的 NAD 调节星形胶质细胞的免疫功能。抑制烟酰胺磷酸核糖转移酶(NAMPT),补救途径中的关键酶,导致 NAD 耗竭,抑制氧化磷酸化,并限制星形胶质细胞的炎症潜力。我们发现,在神经炎症和 MS 的模型中,反应性小鼠和人星形胶质细胞中上调的主要 NADase 是 CD38。通过遗传或药理学抑制星形胶质细胞 CD38 活性可增加 NAD 水平,抑制促炎转录重编程,削弱对炎症单核细胞的趋化潜力,并改善 EAE。我们发现,CD38 活性通过钙调神经磷酸酶/NFAT 信号在小鼠和人反应性星形胶质细胞中介导。因此,星形胶质细胞中的 NAMPT-NAD-CD38 电路控制它们满足能量需求的能力,并驱动促炎转录模块的表达,导致 EAE 中的中枢神经系统病理学,并且可能在 MS 中也是如此。我们的研究结果确定了 MS 的候选治疗靶点。