Pais Ricardo J
Bioenhancer Systems, Office 63 182-184 High Street North, East Ham, London E6 2JA, UK.
Centro de investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal.
BioTech (Basel). 2022 Aug 17;11(3):35. doi: 10.3390/biotech11030035.
Clinical bioinformatics is a newly emerging field that applies bioinformatics techniques for facilitating the identification of diseases, discovery of biomarkers, and therapy decision. Mathematical modelling is part of bioinformatics analysis pipelines and a fundamental step to extract clinical insights from genomes, transcriptomes and proteomes of patients. Often, the chosen modelling techniques relies on either statistical, machine learning or deterministic approaches. Research that combines bioinformatics with modelling techniques have been generating innovative biomedical technology, algorithms and models with biotech applications, attracting private investment to develop new business; however, startups that emerge from these technologies have been facing difficulties to implement clinical bioinformatics pipelines, protect their technology and generate profit. In this commentary, we discuss the main concepts that startups should know for enabling a successful application of predictive modelling in clinical bioinformatics. Here we will focus on key modelling concepts, provide some successful examples and briefly discuss the modelling framework choice. We also highlight some aspects to be taken into account for a successful implementation of cost-effective bioinformatics from a business perspective.
临床生物信息学是一个新兴领域,它应用生物信息学技术来促进疾病识别、生物标志物发现和治疗决策。数学建模是生物信息学分析流程的一部分,也是从患者的基因组、转录组和蛋白质组中提取临床见解的基本步骤。通常,所选择的建模技术依赖于统计、机器学习或确定性方法。将生物信息学与建模技术相结合的研究一直在产生具有生物技术应用的创新生物医学技术、算法和模型,吸引私人投资来发展新业务;然而,从这些技术中涌现出来的初创公司在实施临床生物信息学流程、保护其技术和盈利方面一直面临困难。在这篇评论中,我们讨论了初创公司在临床生物信息学中成功应用预测建模应该了解的主要概念。在这里,我们将专注于关键建模概念,提供一些成功案例并简要讨论建模框架的选择。我们还从商业角度强调了成功实施具有成本效益的生物信息学需要考虑的一些方面。