Lieberwirth Johann Kaspar, Büttner Benjamin, Klöckner Chiara, Platzer Konrad, Popp Bernt, Abou Jamra Rami
Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany.
Hum Mutat. 2022 Dec;43(12):1795-1807. doi: 10.1002/humu.24451. Epub 2022 Sep 14.
Routine exome sequencing (ES) in individuals with neurodevelopmental disorders (NDD) remains inconclusive in >50% of the cases. Research analysis of unsolved cases can identify novel candidate genes but is time-consuming, subjective, and hard to compare between labs. The field, therefore, requires automated and standardized assessment methods to prioritize candidates for matchmaking. We developed AutoCaSc (https://autocasc.uni-leipzig.de) based on our candidate scoring scheme. We validated our approach using synthetic trios and real in-house trio ES data. AutoCaSc consistently (94.5% of all cases) scored the relevant variants in valid novel NDD genes in the top three ranks. In 93 real trio exomes, AutoCaSc identified most (97.5%) previously manually scored variants while evaluating additional high-scoring variants missed in manual evaluation. It identified candidate variants in previously undescribed NDD candidate genes (CNTN2, DLGAP1, SMURF1, NRXN3, and PRICKLE1). AutoCaSc enables anybody to quickly screen a variant for its plausibility in NDD. After contributing >40 descriptions of NDD-associated genes, we provide usage recommendations based on our extensive experience. Our implementation is capable of pipeline integration and therefore allows the screening of large cohorts for candidate genes. AutoCaSc empowers even small labs to a standardized matchmaking collaboration and to contribute to the ongoing identification of novel NDD entities.
对患有神经发育障碍(NDD)的个体进行常规外显子组测序(ES),在超过50%的病例中结果仍不明确。对未解决病例的研究分析可以识别新的候选基因,但耗时、主观,且实验室之间难以比较。因此,该领域需要自动化和标准化的评估方法来对候选基因进行优先级排序以进行匹配。我们基于候选基因评分方案开发了AutoCaSc(https://autocasc.uni-leipzig.de)。我们使用合成三联体和真实的内部三联体ES数据验证了我们的方法。AutoCaSc在有效新发现的NDD基因中始终(在所有病例的94.5%中)将相关变异排在前三位。在93个真实的三联体外显子组中,AutoCaSc识别出了大多数(97.5%)之前人工评分的变异,同时还评估了人工评估中遗漏的其他高分变异。它在之前未描述的NDD候选基因(CNTN2、DLGAP1、SMURF1、NRXN3和PRICKLE1)中识别出了候选变异。AutoCaSc使任何人都能够快速筛选一个变异在NDD中的合理性。在贡献了40多个与NDD相关基因的描述后,我们根据丰富的经验提供了使用建议。我们的实施方案能够进行流程整合,因此可以对大型队列进行候选基因筛选。AutoCaSc甚至使小实验室也能够进行标准化的匹配协作,并为正在进行的新NDD实体的识别做出贡献。