Suppr超能文献

针铁矿共存促进了水铁矿向针铁矿的 Fe(II)-催化转化。

Coexisting Goethite Promotes Fe(II)-Catalyzed Transformation of Ferrihydrite to Goethite.

机构信息

Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, CH-8092 Zurich, Switzerland.

Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstraße 133, CH-8600 Dübendorf, Switzerland.

出版信息

Environ Sci Technol. 2022 Sep 6;56(17):12723-12733. doi: 10.1021/acs.est.2c03925. Epub 2022 Aug 23.

Abstract

In redox-affected soil environments, electron transfer between aqueous Fe(II) and solid-phase Fe(III) catalyzes mineral transformation and recrystallization processes. While these processes have been studied extensively as independent systems, the coexistence of iron minerals is common in nature. Yet it remains unclear how coexisting goethite influences ferrihydrite transformation. Here, we reacted ferrihydrite and goethite mixtures with Fe(II) for 24 h. Our results demonstrate that with more goethite initially present in the mixture more ferrihydrite turned into goethite. We further used stable Fe isotopes to label different Fe pools and probed ferrihydrite transformation in the presence of goethite using Fe Mössbauer spectroscopy and changes in the isotopic composition of solid and aqueous phases. When ferrihydrite alone underwent Fe(II)-catalyzed transformation, Fe atoms initially in the aqueous phase mostly formed lepidocrocite, while those from ferrihydrite mostly formed goethite. When goethite was initially present, more goethite was formed from atoms initially in the aqueous phase, and nanogoethite formed from atoms initially in ferrihydrite. Our results suggest that coexisting goethite promotes formation of more goethite via Fe(II)-goethite electron transfer and template-directed nucleation and growth. We further hypothesize that electron transfer onto goethite followed by electron hopping onto ferrihydrite is another possible pathway to goethite formation. Our findings demonstrate that mineral transformation is strongly influenced by the composition of soil solid phases.

摘要

在氧化还原影响的土壤环境中,水相中的 Fe(II) 和固相中的 Fe(III) 之间的电子转移催化着矿物的转化和重结晶过程。虽然这些过程作为独立系统已经得到了广泛的研究,但铁矿物的共存在自然界中是很常见的。然而,共存的针铁矿如何影响水铁矿的转化仍不清楚。在这里,我们用 Fe(II) 与水铁矿和针铁矿的混合物反应 24 小时。我们的结果表明,混合物中针铁矿的初始含量越多,水铁矿转化成针铁矿的量就越多。我们进一步使用稳定的 Fe 同位素标记不同的 Fe 库,并通过穆斯堡尔光谱和固相与水相同位素组成的变化,在针铁矿存在的情况下探测水铁矿的转化。当水铁矿单独进行 Fe(II)催化转化时,最初在水相中的 Fe 原子主要形成纤铁矿,而最初来自水铁矿的 Fe 原子主要形成针铁矿。当针铁矿最初存在时,更多的针铁矿是由最初在水相中的原子形成的,而纳米针铁矿是由最初在水铁矿中的原子形成的。我们的结果表明,共存的针铁矿通过 Fe(II)-针铁矿电子转移和模板导向的成核和生长促进了更多针铁矿的形成。我们进一步假设,电子转移到针铁矿上,然后电子跳跃到水铁矿上,这是形成针铁矿的另一种可能途径。我们的研究结果表明,矿物转化强烈受到土壤固相组成的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feca/9454240/e959b4ea7e3a/es2c03925_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验