Suppr超能文献

硼酸功能化磁性共价有机框架的简便合成及其在肉样中痕量内分泌干扰化合物的磁性固相萃取中的应用。

Facile synthesis of boric acid-functionalized magnetic covalent organic frameworks and application to magnetic solid-phase extraction of trace endocrine disrupting compounds from meat samples.

机构信息

School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.

出版信息

Food Chem. 2023 Jan 15;399:133843. doi: 10.1016/j.foodchem.2022.133843. Epub 2022 Aug 4.

Abstract

A facile approach was proposed for the preparation of boric acid-functionalized core-shell structured magnetic covalent organic framework (COF) nanocomposites through employing the FeO nanoparticles as magnetic core, boric acid-functionalized COFs as the shell via sequential post-synthetic modification (denoted as FeO@COF@BA). The synthesized nanocomposites showed large specific surface area, high magnetic responsiveness, and desirable chemical and thermal stability. Combined with HPLC-MS/MS, the as-prepared FeO@COF@BA composite was applied as a sorbent for magnetic solid-phase extraction (MSPE) of endocrine disrupting compounds (EDCs) from meat samples. Under optimal conditions, the method displays low limits of detection (LODs, 0.08-0.72 μg kg) and good precision with relative standard deviations (RSD) lower than 5.4 %. The approach was successfully employed for the extraction and detection of EDCs in blank and spiked beef, chicken and pork samples with recovery ranging from 88.8 to 104.2 %.

摘要

提出了一种简便的方法来制备硼酸功能化核壳结构的磁性共价有机框架(COF)纳米复合材料,该方法通过将 FeO 纳米颗粒作为磁性核,硼酸功能化的 COFs 作为壳,通过顺序后合成修饰(表示为 FeO@COF@BA)来实现。所合成的纳米复合材料具有大的比表面积、高的磁响应性以及良好的化学和热稳定性。结合 HPLC-MS/MS,将制备的 FeO@COF@BA 复合材料用作从肉样中萃取和检测内分泌干扰物(EDCs)的磁性固相萃取(MSPE)的吸附剂。在最佳条件下,该方法显示出低的检测限(LOD,0.08-0.72μgkg)和良好的精密度,相对标准偏差(RSD)低于 5.4%。该方法成功地用于从空白和加标牛肉、鸡肉和猪肉样品中提取和检测 EDCs,回收率在 88.8%至 104.2%之间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验