Radboud University Nijmegen, Institute for Computing and Information Science, Nijmegen, The Netherlands.
Radboud University Nijmegen, Institute for Molecules and Materials, Nijmegen, The Netherlands.
PLoS One. 2022 Aug 24;17(8):e0268881. doi: 10.1371/journal.pone.0268881. eCollection 2022.
To evaluate the value of convolutional neural network (CNN) in the diagnosis of human brain tumor or Alzheimer's disease by MR spectroscopic imaging (MRSI) and to compare its Matthews correlation coefficient (MCC) score against that of other machine learning methods and previous evaluation of the same data. We address two challenges: 1) limited number of cases in MRSI datasets and 2) interpretability of results in the form of relevant spectral regions.
A shallow CNN with only one hidden layer and an ad-hoc loss function was constructed involving two branches for processing spectral and image features of a brain voxel respectively. Each branch consists of a single convolutional hidden layer. The output of the two convolutional layers is merged and fed to a classification layer that outputs class predictions for the given brain voxel.
Our CNN method separated glioma grades 3 and 4 and identified Alzheimer's disease patients using MRSI and complementary MRI data with high MCC score (Area Under the Curve were 0.87 and 0.91 respectively). The results demonstrated superior effectiveness over other popular methods as Partial Least Squares or Support Vector Machines. Also, our method automatically identified the spectral regions most important in the diagnosis process and we show that these are in good agreement with existing biomarkers from the literature.
Shallow CNNs models integrating image and spectral features improved quantitative and exploration and diagnosis of brain diseases for research and clinical purposes. Software is available at https://bitbucket.org/TeslaH2O/cnn_mrsi.
通过磁共振波谱成像(MRSI)评估卷积神经网络(CNN)在人脑肿瘤或阿尔茨海默病诊断中的价值,并将其马修斯相关系数(MCC)评分与其他机器学习方法和对同一数据的先前评估进行比较。我们解决了两个挑战:1)MRSI 数据集病例数量有限,2)以相关光谱区域的形式解释结果。
构建了一个仅包含一个隐藏层的浅层 CNN 和一个特定的损失函数,涉及分别处理脑像素光谱和图像特征的两个分支。每个分支都由单个卷积隐藏层组成。两个卷积层的输出合并并馈送到分类层,为给定脑像素输出类别预测。
我们的 CNN 方法使用 MRSI 和补充 MRI 数据,以较高的 MCC 评分(曲线下面积分别为 0.87 和 0.91)分离了 3 级和 4 级胶质瘤,并识别了阿尔茨海默病患者。与其他流行方法(如偏最小二乘法或支持向量机)相比,该方法表现出卓越的有效性。此外,我们的方法自动识别了诊断过程中最重要的光谱区域,并且我们表明这些区域与文献中的现有生物标志物高度一致。
整合图像和光谱特征的浅层 CNN 模型提高了研究和临床目的的脑疾病的定量和探索诊断能力。软件可在 https://bitbucket.org/TeslaH2O/cnn_mrsi 上获得。