Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany.
Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
Neuroimage Clin. 2019;21:101648. doi: 10.1016/j.nicl.2018.101648. Epub 2018 Dec 25.
To develop a statistical method of combining multimodal MRI (mMRI) of adult glial brain tumours to generate tissue heterogeneity maps that indicate tumour grade and infiltration margins.
We performed a retrospective analysis of mMRI from patients with histological diagnosis of glioma (n = 25). H Magnetic Resonance Spectroscopic Imaging (MRSI) was used to label regions of "pure" low- or high-grade tumour across image types. Normal brain and oedema characteristics were defined from healthy controls (n = 10) and brain metastasis patients (n = 10) respectively. Probability density distributions (PDD) for each tissue type were extracted from intensity normalised proton density and T-weighted images, and p and q diffusion maps. Superpixel segmentation and Bayesian inference was used to produce whole-brain tissue-type maps.
Total lesion volumes derived automatically from tissue-type maps correlated with those from manual delineation (p < 0.001, r = 0.87). Large high-grade volumes were determined in all grade III & IV (n = 16) tumours, in grade II gemistocytic rich astrocytomas (n = 3) and one astrocytoma with a histological diagnosis of grade II. For patients with known outcome (n = 20), patients with survival time < 2 years (3 grade II, 2 grade III and 10 grade IV) had a high-grade volume significantly greater than zero (Wilcoxon signed rank p < 0.0001) and also significantly greater high grade volume than the 5 grade II patients with survival >2 years (Mann Witney p = 0.0001). Regions classified from mMRI as oedema had non-tumour-like H MRS characteristics.
H MRSI can label tumour tissue types to enable development of a mMRI tissue type mapping algorithm, with potential to aid management of patients with glial tumours.
开发一种统计方法,将成人神经胶质瘤的多模态 MRI(mMRI)结合起来,生成能够指示肿瘤分级和浸润边界的组织异质性图谱。
我们对 25 例经组织学诊断为胶质瘤的患者进行了 mMRI 回顾性分析。磁共振波谱成像(MRSI)用于标记不同图像类型中“纯”低级别或高级别肿瘤区域。正常脑和水肿特征分别从健康对照者(n=10)和脑转移患者(n=10)中定义。从强度归一化质子密度和 T 加权图像以及 p 和 q 扩散图中提取每个组织类型的概率密度分布(PDD)。超像素分割和贝叶斯推断用于生成全脑组织类型图。
从组织类型图自动得出的总病变体积与手动勾画的体积具有良好相关性(p<0.001,r=0.87)。所有 III 级和 IV 级(n=16)肿瘤、2 级富胶质细胞瘤(n=3)和 1 级 II 级星形细胞瘤均确定了大体积高级别肿瘤。对于已知预后的患者(n=20),生存时间<2 年的患者(3 级 II,2 级 III 和 10 级 IV)高级别体积显著大于零(Wilcoxon 符号秩检验 p<0.0001),并且显著大于生存时间>2 年的 5 级 II 级患者(Mann-Whitney p=0.0001)。mMRI 分类为水肿的区域具有非肿瘤样 H MRS 特征。
MRSI 可以标记肿瘤组织类型,从而开发 mMRI 组织类型映射算法,有望辅助胶质细胞瘤患者的管理。