Ortega-Martorell Sandra, Olier Ivan, Hernandez Orlando, Restrepo-Galvis Paula D, Bellfield Ryan A A, Candiota Ana Paula
Data Science Research Centre, Liverpool John Moores University, Liverpool L3 3AF, UK.
Escuela Colombiana de Ingeniería Julio Garavito, Bogota 111166, Colombia.
Cancers (Basel). 2023 Aug 7;15(15):4002. doi: 10.3390/cancers15154002.
Glioblastoma (GB) is a malignant brain tumour that is challenging to treat, often relapsing even after aggressive therapy. Evaluating therapy response relies on magnetic resonance imaging (MRI) following the Response Assessment in Neuro-Oncology (RANO) criteria. However, early assessment is hindered by phenomena such as pseudoprogression and pseudoresponse. Magnetic resonance spectroscopy (MRS/MRSI) provides metabolomics information but is underutilised due to a lack of familiarity and standardisation.
This study explores the potential of spectroscopic imaging (MRSI) in combination with several machine learning approaches, including one-dimensional convolutional neural networks (1D-CNNs), to improve therapy response assessment. Preclinical GB (GL261-bearing mice) were studied for method optimisation and validation.
The proposed 1D-CNN models successfully identify different regions of tumours sampled by MRSI, i.e., normal brain (N), control/unresponsive tumour (T), and tumour responding to treatment (R). Class activation maps using Grad-CAM enabled the study of the key areas relevant to the models, providing model explainability. The generated colour-coded maps showing the N, T and R regions were highly accurate (according to Dice scores) when compared against ground truth and outperformed our previous method.
The proposed methodology may provide new and better opportunities for therapy response assessment, potentially providing earlier hints of tumour relapsing stages.
胶质母细胞瘤(GB)是一种恶性脑肿瘤,治疗具有挑战性,即使经过积极治疗也常复发。评估治疗反应依赖于遵循神经肿瘤学反应评估(RANO)标准的磁共振成像(MRI)。然而,早期评估受到假进展和假反应等现象的阻碍。磁共振波谱(MRS/MRSI)可提供代谢组学信息,但由于缺乏熟悉度和标准化而未得到充分利用。
本研究探索了波谱成像(MRSI)与包括一维卷积神经网络(1D-CNN)在内的几种机器学习方法相结合在改善治疗反应评估方面的潜力。对携带GL261的临床前GB小鼠进行了方法优化和验证研究。
所提出的1D-CNN模型成功识别了通过MRSI采样的肿瘤不同区域,即正常脑(N)、对照/无反应肿瘤(T)和对治疗有反应的肿瘤(R)。使用Grad-CAM的类激活映射能够研究与模型相关的关键区域,提供模型可解释性。与真实情况相比,生成的显示N、T和R区域的彩色编码图具有很高的准确性(根据Dice分数),并且优于我们之前的方法。
所提出的方法可能为治疗反应评估提供新的更好的机会,有可能提供肿瘤复发阶段的早期线索。