Suppr超能文献

关联大脑的微观结构和宏观结构行为。

Correlating the microstructural architecture and macrostructural behaviour of the brain.

机构信息

Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany.

Departments of Mechanical Engineering and Bioengineering, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States.

出版信息

Acta Biomater. 2022 Oct 1;151:379-395. doi: 10.1016/j.actbio.2022.08.034. Epub 2022 Aug 21.

Abstract

The computational simulation of pathological conditions and surgical procedures, for example the removal of cancerous tissue, can contribute crucially to the future of medicine. Especially for brain surgery, these methods can be important, as the ultra-soft tissue controls vital functions of the body. However, the microstructural interactions and their effects on macroscopic material properties remain incompletely understood. Therefore, we investigated the mechanical behaviour of brain tissue under three different deformation modes, axial tension, compression, and semi-confined compression, in different anatomical regions, and for varying axon orientation. In addition, we characterised the underlying microstructure in terms of myelin, cells, glial cells and neuron area fraction, and density. The correlation of these quantities with the material parameters of the anisotropic Ogden model reveals a decrease in shear modulus with increasing myelin area fraction. Strikingly, the tensile shear modulus correlates positively with cell and neuronal area fraction (Spearman's correlation coefficient of r=0.40 and r=0.33), whereas the compressive shear modulus decreases with increasing glial cell area (r=-0.33). Our study finds that tissue non-linearity significantly depends on the myelin area fraction (r=0.47), cell density (r=0.41) and glial cell area (r=0.49). Our results provide an important step towards understanding the micromechanical load transfer that leads to the non-linear macromechanical behaviour of the brain. STATEMENT OF SIGNIFICANCE: Within this article, we investigate the mechanical behaviour of brain tissue under three different deformation modes, in different anatomical regions, and for varying axon orientation. Further, we characterise the underlying microstructure in terms of various constituents. The correlation of these quantities with the material parameters of the anisotropic Ogden model reveals a decrease in shear modulus with increasing myelin area fraction. Strikingly, the tensile shear modulus correlates positively with cell and neuronal area fraction, whereas the compressive shear modulus decreases with increasing glial cell area. Our study finds that tissue non-linearity significantly depends on the myelin area fraction, cell density, and glial cell area. Our results provide an important step towards understanding the micromechanical load transfer that leads to the non-linear macromechanical behaviour of the brain.

摘要

例如,对病理性状态和手术过程的计算模拟可以为医学的未来发展做出重大贡献。特别是对于脑外科手术,这些方法可能非常重要,因为超软的脑组织控制着身体的重要功能。然而,微观结构相互作用及其对宏观材料特性的影响仍不完全清楚。因此,我们研究了脑组织在三种不同变形模式(轴向拉伸、压缩和半约束压缩)下的力学行为,在不同的解剖区域,以及不同的轴突方向。此外,我们还从微观结构上对髓鞘、细胞、神经胶质细胞和神经元区域分数以及密度进行了描述。这些数量与各向异性 Ogden 模型的材料参数的相关性表明,剪切模量随髓鞘区域分数的增加而降低。引人注目的是,拉伸剪切模量与细胞和神经元区域分数呈正相关(Spearman 相关系数 r=0.40 和 r=0.33),而压缩剪切模量随神经胶质细胞区域分数的增加而降低(r=-0.33)。我们的研究发现,组织的非线性显著依赖于髓鞘区域分数(r=0.47)、细胞密度(r=0.41)和神经胶质细胞区域分数(r=0.49)。我们的研究结果为理解导致大脑非线性宏观力学行为的微观力学载荷传递提供了重要的一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验