Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 5, 91058, Erlangen, Germany.
Institute for Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen Nürnberg, Universitätsstr. 19, 91054, Erlangen, Germany.
Sci Rep. 2023 May 29;13(1):8703. doi: 10.1038/s41598-023-35768-3.
Brain injuries are often characterized by diffusely distributed axonal and vascular damage invisible to medical imaging techniques. The spatial distribution of mechanical stresses and strains plays an important role, but is not sufficient to explain the diffuse distribution of brain lesions. It remains unclear how forces are transferred from the organ to the cell scale and why some cells are damaged while neighboring cells remain unaffected. To address this knowledge gap, we subjected histologically stained fresh human and porcine brain tissue specimens to compressive loading and simultaneously tracked cell and blood vessel displacements. Our experiments reveal different mechanisms of load transfer from the organ or tissue scale to single cells, axons, and blood vessels. Our results show that cell displacement fields are inhomogeneous at the interface between gray and white matter and in the vicinity of blood vessels-locally inducing significant deformations of individual cells. These insights have important implications to better understand injury mechanisms and highlight the importance of blood vessels for the local deformation of the brain's cellular structure during loading.
脑损伤通常表现为弥漫性分布的轴突和血管损伤,这些损伤在医学成像技术中不可见。机械应力和应变的空间分布起着重要作用,但不足以解释脑损伤的弥漫分布。力如何从器官传递到细胞尺度,以及为什么有些细胞受损而相邻细胞不受影响,这仍然不清楚。为了解决这一知识空白,我们对经过组织学染色的新鲜人脑和猪脑组织标本进行了压缩加载,并同时跟踪细胞和血管的位移。我们的实验揭示了从器官或组织尺度到单个细胞、轴突和血管的不同载荷传递机制。我们的结果表明,在灰质和白质之间的界面以及在血管附近,细胞位移场是不均匀的,这会导致个别细胞的显著变形。这些研究结果对更好地理解损伤机制具有重要意义,并强调了血管在加载过程中对大脑细胞结构的局部变形的重要性。