文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

理性纳米医学设计增强了临床物理治疗启发或联合免疫疗法。

Rational Nanomedicine Design Enhances Clinically Physical Treatment-Inspired or Combined Immunotherapy.

机构信息

Department of Radiology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, No. 8 Wenchang Road, Liuzhou, 545006, P. R. China.

Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China.

出版信息

Adv Sci (Weinh). 2022 Oct;9(29):e2203921. doi: 10.1002/advs.202203921. Epub 2022 Aug 24.


DOI:10.1002/advs.202203921
PMID:36002305
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9561875/
Abstract

Independent of tumor type and non-invasive or minimally-invasive feature, current physical treatments including ultrasound therapy, microwave ablation (MWA), and radiofrequency ablation (RFA) are widely used as the local treatment methods in clinics for directly killing tumors and activating systematic immune responses. However, the activated immune responses are inadequate and incompetent for tumor recession, and the incomplete thermal ablation even aggravates the immunosuppressive tumor microenvironment (ITM), resulting in the intractable tumor recurrence and metastasis. Intriguingly, nanomedicine provides a powerful platform as they can elevate energy utilization efficiency and augment oncolytic effects for mitigating ITM and potentiating the systematic immune responses. Especially after combining with clinical immunotherapy, the anti-tumor killing effect by activating or enhancing the human anti-tumor immune system is reached, enabling the effective prevention against tumor recurrence and metastasis. This review systematically introduces the cutting-edge progress and direction of nanobiotechnologies and their corresponding nanomaterials. Moreover, the enhanced physical treatment efficiency against tumor progression, relapse, and metastasis via activating or potentiating the autologous immunity or combining with exogenous immunotherapeutic agents is exemplified, and their rationales are analyzed. This review offers general guidance or directions to enhance clinical physical treatment from the perspectives of immunity activation or magnification.

摘要

独立于肿瘤类型和非侵入性或微创特征,目前的物理治疗方法包括超声治疗、微波消融(MWA)和射频消融(RFA),被广泛用作临床中直接杀死肿瘤和激活全身免疫反应的局部治疗方法。然而,激活的免疫反应不足以使肿瘤消退,不完全的热消融甚至会加重免疫抑制性肿瘤微环境(ITM),导致肿瘤的难治性复发和转移。有趣的是,纳米医学提供了一个强大的平台,因为它们可以提高能量利用效率,并增强溶瘤效应,以减轻 ITM 并增强全身免疫反应。特别是在与临床免疫疗法结合后,通过激活或增强人体抗肿瘤免疫系统来达到抗肿瘤杀伤效果,从而有效地预防肿瘤复发和转移。本综述系统地介绍了纳米生物技术及其相应的纳米材料的最新进展和方向。此外,通过激活或增强自身免疫或与外源性免疫治疗剂结合来增强物理治疗对肿瘤进展、复发和转移的效果的例子也被列举出来,并分析了其合理性。本综述从免疫激活或放大的角度为增强临床物理治疗提供了一般性的指导或方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/139887e4256c/ADVS-9-2203921-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/784df7274d0b/ADVS-9-2203921-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/e03099e594d7/ADVS-9-2203921-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/275c6bb30ba4/ADVS-9-2203921-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/fe33fa1bf39f/ADVS-9-2203921-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/4c1940adee96/ADVS-9-2203921-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/b53cdd3df213/ADVS-9-2203921-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/d37697dac5da/ADVS-9-2203921-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/4932c9676e4e/ADVS-9-2203921-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/6f8c2dc9c1b2/ADVS-9-2203921-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/139887e4256c/ADVS-9-2203921-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/784df7274d0b/ADVS-9-2203921-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/e03099e594d7/ADVS-9-2203921-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/275c6bb30ba4/ADVS-9-2203921-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/fe33fa1bf39f/ADVS-9-2203921-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/4c1940adee96/ADVS-9-2203921-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/b53cdd3df213/ADVS-9-2203921-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/d37697dac5da/ADVS-9-2203921-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/4932c9676e4e/ADVS-9-2203921-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/6f8c2dc9c1b2/ADVS-9-2203921-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5409/9561875/139887e4256c/ADVS-9-2203921-g004.jpg

相似文献

[1]
Rational Nanomedicine Design Enhances Clinically Physical Treatment-Inspired or Combined Immunotherapy.

Adv Sci (Weinh). 2022-10

[2]
Clinical application status and prospect of the combined anti-tumor strategy of ablation and immunotherapy.

Front Immunol. 2022

[3]
Nanobiotechnology-enabled energy utilization elevation for augmenting minimally-invasive and noninvasive oncology thermal ablation.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021-11

[4]
A well-matched marriage of immunotherapy and radiofrequency ablation to reduce the relapse and progression of hepatocellular carcinoma.

Biosci Trends. 2022-11-20

[5]
Radiofrequency ablation of liver metastasis: potential impact on immune checkpoint inhibitor therapy.

Eur Radiol. 2019-4-8

[6]
Complication Rates and Risk of Recurrence After Percutaneous Radiofrequency Ablation and Microwave Ablation for the Treatment of Liver Tumors: a Meta-analysis.

Acad Radiol. 2024-4

[7]
Tumor-Targeted Nanomedicine for Immunotherapy.

Acc Chem Res. 2020-12-15

[8]
Efficacy and safety of radiofrequency, microwave and laser ablation for treating papillary thyroid microcarcinoma: a systematic review and meta-analysis.

Int J Hyperthermia. 2019

[9]
Percutaneous Ablation-Induced Immunomodulation in Hepatocellular Carcinoma.

Int J Mol Sci. 2020-6-20

[10]
Radiofrequency Ablation and Microwave Ablation in Liver Tumors: An Update.

Oncologist. 2019-6-19

引用本文的文献

[1]
Targetedly Attenuating Cancer Stemness and Plasticity by Homologous Cancer Stem Cell-Inherited Fusion Membrane Nanoeffectors against Cancer Metastasis.

Small Sci. 2023-12-3

[2]
Application of nanomedicines in tumor immunotherapy.

J Mol Cell Biol. 2025-6-12

[3]
Gelation embolism agents suppress clinical TACE-incited pro-metastatic microenvironment against hepatocellular carcinoma progression.

EBioMedicine. 2024-11

[4]
Tissue Ablation: Applications and Perspectives.

Adv Mater. 2024-8

[5]
Enhancing the Mechanical Properties and Aging Resistance of 3D-Printed Polyurethane through Polydopamine and Graphene Coating.

Polymers (Basel). 2023-9-13

[6]
Sequential Ubiquitination and Phosphorylation Epigenetics Reshaping by MG132-Loaded Fe-MOF Disarms Treatment Resistance to Repulse Metastatic Colorectal Cancer.

Adv Sci (Weinh). 2023-8

[7]
Macrophage-inherited exosome excise tumor immunosuppression to expedite immune-activated ferroptosis.

J Immunother Cancer. 2023-5

[8]
Highly Mimetic Ex Vivo Lung-Cancer Spheroid-Based Physiological Model for Clinical Precision Therapeutics.

Adv Sci (Weinh). 2023-6

[9]
Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment.

Cancers (Basel). 2023-1-24

[10]
Novel combination strategy of high intensity focused ultrasound (HIFU) and checkpoint blockade boosted by bioinspired and oxygen-supplied nanoprobe for multimodal imaging-guided cancer therapy.

J Immunother Cancer. 2023-1

本文引用的文献

[1]
Strategies for enhancing cancer chemodynamic therapy performance.

Exploration (Beijing). 2022-3-7

[2]
Recent advances in overcoming barriers to cell-based delivery systems for cancer immunotherapy.

Exploration (Beijing). 2022-3-15

[3]
Manganese carbonate nanoparticles-mediated mitochondrial dysfunction for enhanced sonodynamic therapy.

Exploration (Beijing). 2021-9-30

[4]
Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles.

Nat Nanotechnol. 2022-8

[5]
Engineering defected 2D Pd/H-TiO nanosonosensitizers for hypoxia alleviation and enhanced sono-chemodynamic cancer nanotherapy.

J Nanobiotechnology. 2022-4-12

[6]
Landscape of the Peripheral Immune Response Induced by Local Microwave Ablation in Patients with Breast Cancer.

Adv Sci (Weinh). 2022-6

[7]
Sonosensitizer nanoplatform-mediated sonodynamic therapy induced immunogenic cell death and tumor immune microenvironment variation.

Drug Deliv. 2022-12

[8]
Physical & Chemical Microwave Ablation (MWA) Enabled by Nonionic MWA Nanosensitizers Repress Incomplete MWA-Arised Liver Tumor Recurrence.

ACS Nano. 2022-4-26

[9]
TIGIT Blockade Exerts Synergistic Effects on Microwave Ablation Against Cancer.

Front Immunol. 2022

[10]
A Paradigm of Cancer Immunotherapy Based on 2-[18F]FDG and Anti-PD-L1 mAb Combination to Enhance the Antitumor Effect.

Clin Cancer Res. 2022-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索