Graduate School of Sport Sciences, Waseda University, Saitama, Japan.
Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.
J Anat. 2022 Dec;241(6):1324-1335. doi: 10.1111/joa.13750. Epub 2022 Aug 25.
Fascicle architecture (length and pennation angle) can vary regionally within a muscle. The architectural variability in human muscles has been evaluated in vivo, but the interindividual variation and its determinants remain unclear. Considering that within-muscle non-uniform changes in pennation angle are associated with change in muscle size by chronic mechanical loading, we hypothesized that the regional variation in fascicle architecture is dependent on interindividual variation in muscle size. To test this hypothesis, we reconstructed fascicles three-dimensionally along and across the whole medial gastrocnemius in the right lower leg of 15 healthy adults (10 males and 5 females, 23.7 ± 3.3 years, 165.8 ± 8.3 cm, 61.9 ± 11.4 kg, mean ± standard deviation) in neutral ankle joint position with the knee fully extended, using magnetic resonance diffusion tensor imaging and tractography. The 3D-reconstructed fascicles arose from the deep aponeurosis with variable lengths and angles both in sagittal and coronal planes. The fascicle length was significantly longer in the middle (middle-medial: 52.4 ± 6.1 mm, middle-lateral: 52.0 ± 5.1 mm) compared to distal regions (distal-medial: 41.0 ± 5.0 mm, distal-lateral: 38.9 ± 3.6 mm, p < 0.001). The 2D pennation angle (angle relative to muscle surface) was significantly greater in distal than middle regions, and medial than lateral regions (middle-medial: 26.6 ± 3.1°, middle-lateral: 24.1 ± 2.3°, distal-medial: 31.2 ± 3.6°, distal-lateral: 29.2 ± 3.0°, p ≤ 0.017), while only a proximo-distal difference was significant (p < 0.001) for 3D pennation angle (angle relative to line of action of muscle). These results clearly indicate fascicle's architectural variation in 3D. The magnitude of regional variation evaluated as standard deviation across regions differed considerably among individuals (4.0-10.7 mm for fascicle length, 0.9-5.0° for 2D pennation angle, and 3.0-8.8° for 3D pennation angle), which was positively correlated with the muscle volume normalized to body mass (r = 0.659-0.828, p ≤ 0.008). These findings indicate muscle-size dependence of the variability of fascicle architecture.
束结构(长度和羽状角)在肌肉内可以在区域上发生变化。人体肌肉的结构变异性已经在体内进行了评估,但个体间的差异及其决定因素仍不清楚。考虑到慢性机械负荷引起的羽状角在肌肉内的非均匀变化与肌肉大小的变化有关,我们假设束结构的区域变化取决于肌肉大小的个体间差异。为了验证这一假设,我们使用磁共振弥散张量成像和轨迹追踪技术,在 15 名健康成年人(10 名男性和 5 名女性,23.7±3.3 岁,165.8±8.3 厘米,61.9±11.4 千克,平均值±标准差)的右小腿中,在膝关节完全伸展的中立踝关节位置,对整个内侧胫骨肌进行了三维重建。三维重建的束从深部腱膜发出,在矢状面和冠状面都有不同的长度和角度。中间区域(中间-内侧:52.4±6.1 毫米,中间-外侧:52.0±5.1 毫米)的束长度明显长于远端区域(远端-内侧:41.0±5.0 毫米,远端-外侧:38.9±3.6 毫米,p<0.001)。二维羽状角(相对于肌肉表面的角度)在远端明显大于中间区域,在中间明显大于外侧区域(中间-内侧:26.6±3.1°,中间-外侧:24.1±2.3°,远端-内侧:31.2±3.6°,远端-外侧:29.2±3.0°,p≤0.017),而只有近端-远端差异具有统计学意义(p<0.001),用于三维羽状角(相对于肌肉作用线的角度)。这些结果清楚地表明了束在三维空间中的结构变化。作为跨区域的标准差评估的区域变化程度在个体之间有很大差异(束长度为 4.0-10.7 毫米,二维羽状角为 0.9-5.0°,三维羽状角为 3.0-8.8°),与肌肉体积相对于体重的归一化呈正相关(r=0.659-0.828,p≤0.008)。这些发现表明,束结构的变异性取决于肌肉大小。