Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.
University Health Network, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.
Psychol Med. 2023 Sep;53(12):5374-5384. doi: 10.1017/S0033291722002124. Epub 2022 Aug 25.
Prediction of treatment outcomes is a key step in improving the treatment of major depressive disorder (MDD). The Canadian Biomarker Integration Network in Depression (CAN-BIND) aims to predict antidepressant treatment outcomes through analyses of clinical assessment, neuroimaging, and blood biomarkers.
In the CAN-BIND-1 dataset of 192 adults with MDD and outcomes of treatment with escitalopram, we applied machine learning models in a nested cross-validation framework. Across 210 analyses, we examined combinations of predictive variables from three modalities, measured at baseline and after 2 weeks of treatment, and five machine learning methods with and without feature selection. To optimize the predictors-to-observations ratio, we followed a tiered approach with 134 and 1152 variables in tier 1 and tier 2 respectively.
A combination of baseline tier 1 clinical, neuroimaging, and molecular variables predicted response with a mean balanced accuracy of 0.57 (best model mean 0.62) compared to 0.54 (best model mean 0.61) in single modality models. Adding week 2 predictors improved the prediction of response to a mean balanced accuracy of 0.59 (best model mean 0.66). Adding tier 2 features did not improve prediction.
A combination of clinical, neuroimaging, and molecular data improves the prediction of treatment outcomes over single modality measurement. The addition of measurements from the early stages of treatment adds precision. Present results are limited by lack of external validation. To achieve clinically meaningful prediction, the multimodal measurement should be scaled up to larger samples and the robustness of prediction tested in an external validation dataset.
预测治疗结果是改善重度抑郁症(MDD)治疗的关键步骤。加拿大抑郁症生物标志物综合网络(CAN-BIND)旨在通过对临床评估、神经影像学和血液生物标志物的分析来预测抗抑郁治疗的结果。
在 192 名 MDD 患者和接受依西酞普兰治疗的结果的 CAN-BIND-1 数据集,我们在嵌套交叉验证框架中应用了机器学习模型。在 210 项分析中,我们检查了来自三个模态的预测变量的组合,这些变量在基线和治疗 2 周后进行了测量,以及五种具有和不具有特征选择的机器学习方法。为了优化预测器与观察值的比例,我们采用了分层方法,在第 1 层和第 2 层分别有 134 个和 1152 个变量。
基线第 1 层临床、神经影像学和分子变量的组合预测了反应,平均平衡准确性为 0.57(最佳模型平均值为 0.62),而单模态模型的平均平衡准确性为 0.54(最佳模型平均值为 0.61)。添加第 2 周的预测因子可提高反应的预测平均平衡准确性至 0.59(最佳模型平均值为 0.66)。添加第 2 层特征并没有提高预测。
临床、神经影像学和分子数据的组合提高了单模态测量治疗结果的预测。添加治疗早期的测量值可提高预测的精度。目前的结果受到缺乏外部验证的限制。为了实现有临床意义的预测,多模态测量应该扩展到更大的样本,并在外部验证数据集中测试预测的稳健性。