Suppr超能文献

迈向基于因果推断的抗抑郁药选择:借助脑和血液生物标志物

Towards causal inference-based antidepressant selection with brain and blood biomarkers.

作者信息

Barac Milica, Grant Caroline W, Toll Russell, Carmody Thomas, Minhajuddin Abu, Fatt Cherise Chin, Foster Jane A, Croarkin Paul E, Bobo William V, Jha Manish K, Athreya Arjun P, Trivedi Madhukar H

机构信息

Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.

Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.

出版信息

Neuropsychopharmacology. 2025 Sep 5. doi: 10.1038/s41386-025-02183-3.

Abstract

This report sought to employ multi-modal integration of pre-treatment brain (electroencephalogram, resting-state functional magnetic resonance imaging) and blood (immune and metabolic) biomarkers to facilitate causal inference-based treatment selection by virtue of establishing predictability of remission to multi-stage antidepressant treatment. Data from two stages of pharmacotherapy in the 'Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care for Depression' (EMBARC) study from participants with both brain and blood biomarkers were included (N = 197). Participants were initially randomized to sertraline or placebo (Stage 1), and depending on clinical response at week-8, their therapy in Stage 2 was either maintained or switched (to sertraline, if a non-responder to placebo, or to bupropion, if a non-responder to sertraline). Three readily accessible clinical features combined with 15 multi-modal features associated with baseline depression severity predicted stage 2 remission with an AUC of 0.74, 0.71, and 0.73 for sertraline, bupropion, and placebo treatment respectively. Propensity score-matching (causal inference) was conducted across Stage 2 treatment arms, and the same features were used to build an unsupervised model to produce the probability of remission to the given Stage 2 treatment (as factual outcome), as well as the alternative treatment not given (as counter factual). While the accuracy of observed outcomes across treatment arms was 82%, the accuracies of predicted counterfactual (unobserved) outcomes warrant future prospective studies. 16 weeks and associated biomarker-based prediction of counterfactuals suggest that the selected markers are highly sensitive features for guiding antidepressant treatment selection.

摘要

本报告旨在通过整合治疗前大脑(脑电图、静息态功能磁共振成像)和血液(免疫和代谢)生物标志物的多模态信息,建立多阶段抗抑郁治疗缓解的可预测性,从而促进基于因果推断的治疗选择。纳入了“抑郁症临床护理抗抑郁反应的调节因素和生物标志物研究”(EMBARC)中同时具有大脑和血液生物标志物的参与者在两个药物治疗阶段的数据(N = 197)。参与者最初被随机分配到舍曲林或安慰剂组(第1阶段),根据第8周的临床反应,他们在第2阶段的治疗要么维持,要么切换(如果对安慰剂无反应则换用舍曲林,如果对舍曲林无反应则换用安非他酮)。三个易于获取的临床特征与15个与基线抑郁严重程度相关的多模态特征相结合,分别预测了舍曲林、安非他酮和安慰剂治疗第2阶段缓解的曲线下面积(AUC)为0.74、0.71和0.73。在第2阶段治疗组之间进行了倾向得分匹配(因果推断),并使用相同的特征构建了一个无监督模型,以产生对给定第2阶段治疗缓解的概率(作为实际结果)以及未给予的替代治疗的概率(作为反事实结果)。虽然各治疗组观察到的结果准确率为82%,但预测的反事实(未观察到)结果的准确率有待未来的前瞻性研究。16周及基于生物标志物的反事实预测表明,所选标志物是指导抗抑郁治疗选择的高度敏感特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验