Department of Biostatistics, Columbia University, New York, New York, USA.
Department of Statistics, NJIT, Newark, New Jersey, USA.
Biometrics. 2023 Sep;79(3):2444-2457. doi: 10.1111/biom.13742. Epub 2022 Sep 19.
Modern neuroimaging technologies have substantially advanced the measurement of brain activity. Electroencephalogram (EEG) as a noninvasive neuroimaging technique measures changes in electrical voltage on the scalp induced by brain cortical activity. With its high temporal resolution, EEG has emerged as an increasingly useful tool to study brain connectivity. Challenges with modeling EEG signals of complex brain activity include interactions among unknown sources, low signal-to-noise ratio, and substantial between-subject heterogeneity. In this work, we propose a state space model that jointly analyzes multichannel EEG signals and learns dynamics of different sources corresponding to brain cortical activity. Our model borrows strength from spatially correlated measurements and uses low-dimensional latent states to explain all observed channels. The model can account for patient heterogeneity and quantify the effect of a subject's covariates on the latent space. The EM algorithm, Kalman filtering, and bootstrap resampling are used to fit the state space model and provide comparisons between patient diagnostic groups. We apply the developed approach to a case-control study of alcoholism and reveal significant attenuation of brain activity in response to visual stimuli in alcoholic subjects compared to healthy controls.
现代神经影像学技术在测量大脑活动方面取得了重大进展。脑电图(EEG)作为一种非侵入性的神经影像学技术,测量的是由大脑皮层活动引起的头皮上电压的变化。EEG 具有较高的时间分辨率,已成为研究大脑连接的一种越来越有用的工具。对复杂大脑活动的 EEG 信号进行建模的挑战包括未知源之间的相互作用、低信噪比和大量的受试者间异质性。在这项工作中,我们提出了一个状态空间模型,该模型联合分析多通道 EEG 信号,并学习对应大脑皮层活动的不同源的动力学。我们的模型借鉴了空间相关测量的优势,并使用低维潜在状态来解释所有观察到的通道。该模型可以解释患者的异质性,并量化受试者协变量对潜在空间的影响。我们使用 EM 算法、卡尔曼滤波和自举重采样来拟合状态空间模型,并提供患者诊断组之间的比较。我们将开发的方法应用于酒精中毒的病例对照研究,结果显示,与健康对照组相比,酒精中毒患者对视觉刺激的大脑活动明显减弱。