Sun By Ming, Zeng Donglin, Wang Yuanjia
Department of Biostatistics, Columbia University, 722 West 168th St. New York, U.S.
Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA.
Biometrika. 2021 Mar;108(1):199-214. doi: 10.1093/biomet/asaa042. Epub 2020 Sep 24.
Dynamical systems based on differential equations are useful for modeling the temporal evolution of biomarkers. These systems can characterize the temporal patterns of biomarkers and inform the detection of interactions among biomarkers. Existing statistical methods for dynamical systems mostly target single time-course data based on a linear model or generalized additive model. Hence, they cannot adequately capture the complex interactions among biomarkers; neither can they take into account the heterogeneity between systems or subjects. in this work, we propose a semiparametric dynamical system based on multi-index models for multiple subjects time-course data. Our model accounts for between-subject heterogeneity by introducing system-level or subject-level covariates to dynamic systems, and it allows for nonlinear relationship and interaction between the combined biomarkers and the temporal rate of each biomarker. For estimation and inference, we consider a two-step procedure based on integral equations from the proposed model. We propose an algorithm that iterates between the estimation of the link function through splines and the estimation of index parameters and that allows for regularization to achieve sparsity. We prove model identifiability and derive the asymptotic properties of the estimated model parameters. A benefit of our approach is to pool information from multiple subjects to identify the interaction among biomarkers. We apply the method to analyze electroencephalogram (EEG) data for patients affected by alcohol dependence. The results reveal new insight on patients' brain activities and demonstrate differential interaction patterns in patients compared to health control subjects.
基于微分方程的动态系统对于生物标志物的时间演变建模很有用。这些系统可以表征生物标志物的时间模式,并为生物标志物之间相互作用的检测提供信息。现有的动态系统统计方法大多基于线性模型或广义相加模型针对单时间进程数据。因此,它们无法充分捕捉生物标志物之间的复杂相互作用;也无法考虑系统或受试者之间的异质性。在这项工作中,我们针对多受试者时间进程数据提出了一种基于多指标模型的半参数动态系统。我们的模型通过向动态系统引入系统级或受试者级协变量来考虑受试者间的异质性,并且它允许组合生物标志物与每个生物标志物的时间变化率之间存在非线性关系和相互作用。对于估计和推断,我们考虑基于所提出模型的积分方程的两步程序。我们提出一种算法,该算法在通过样条估计链接函数与估计指标参数之间进行迭代,并允许进行正则化以实现稀疏性。我们证明了模型的可识别性,并推导了估计模型参数的渐近性质。我们方法的一个优点是汇总来自多个受试者的信息以识别生物标志物之间的相互作用。我们应用该方法分析酒精依赖患者的脑电图(EEG)数据。结果揭示了对患者大脑活动的新见解,并证明了与健康对照受试者相比患者存在不同的相互作用模式。