Department of Statistics, University of Virginia 148 Amphitheater Way, Charlottesville, VA 22904-4135, USA
Biostatistics. 2021 Jul 17;22(3):613-628. doi: 10.1093/biostatistics/kxz056.
The human brain is a directional network system, in which brain regions are network nodes and the influence exerted by one region on another is a network edge. We refer to this directional information flow from one region to another as directional connectivity. Seizures arise from an epileptic directional network; abnormal neuronal activities start from a seizure onset zone and propagate via a network to otherwise healthy brain regions. As such, effective epilepsy diagnosis and treatment require accurate identification of directional connections among regions, i.e., mapping of epileptic patients' brain networks. This article aims to understand the epileptic brain network using intracranial electroencephalographic data-recordings of epileptic patients' brain activities in many regions. The most popular models for directional connectivity use ordinary differential equations (ODE). However, ODE models are sensitive to data noise and computationally costly. To address these issues, we propose a high-dimensional state-space multivariate autoregression (SSMAR) model for the brain's directional connectivity. Different from standard multivariate autoregression and SSMAR models, the proposed SSMAR features a cluster structure, where the brain network consists of several clusters of densely connected brain regions. We develop an expectation-maximization algorithm to estimate the proposed model and use it to map the interregional networks of epileptic patients in different seizure stages. Our method reveals the evolution of brain networks during seizure development.
人脑是一个有向网络系统,其中大脑区域是网络节点,一个区域对另一个区域的影响是网络边。我们将这种从一个区域到另一个区域的定向信息流称为定向连接。癫痫发作源于癫痫有向网络;异常神经元活动从起始区开始,并通过网络传播到其他健康的大脑区域。因此,有效的癫痫诊断和治疗需要准确识别区域之间的定向连接,即绘制癫痫患者的大脑网络。本文旨在使用癫痫患者大脑活动的颅内脑电图数据记录来理解癫痫大脑网络。最流行的定向连接模型使用常微分方程(ODE)。然而,ODE 模型对数据噪声敏感且计算成本高。为了解决这些问题,我们提出了一种用于大脑定向连接的高维状态空间多元自回归(SSMAR)模型。与标准多元自回归和 SSMAR 模型不同,所提出的 SSMAR 具有聚类结构,其中大脑网络由几个密集连接的大脑区域组成的集群组成。我们开发了一种期望最大化算法来估计所提出的模型,并使用它来绘制不同癫痫发作阶段的癫痫患者的区域间网络。我们的方法揭示了癫痫发作过程中大脑网络的演变。