Suppr超能文献

一种超低噪声、低功耗、微型化双通道无线神经记录微系统。

An Ultra-Low-Noise, Low Power and Miniaturized Dual-Channel Wireless Neural Recording Microsystem.

机构信息

Key Laboratory of Radio Frequency Circuit and System, Hangzhou Dianzi University, Hangzhou 310018, China.

Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China.

出版信息

Biosensors (Basel). 2022 Aug 8;12(8):613. doi: 10.3390/bios12080613.

Abstract

As the basic tools for neuroscience research, invasive neural recording devices can obtain high-resolution neuronal activity signals through electrodes connected to the subject's brain. Existing wireless neural recording devices are large in size or need external large-scale equipment for wireless power supply, which limits their application. Here, we developed an ultra-low-noise, low power and miniaturized dual-channel wireless neural recording microsystem. With the full-differential front-end structure of the dual operational amplifiers (op-amps), the noise level and power consumption are notably reduced. The hierarchical microassembly technology, which integrates wafer-level packaged op-amps and the miniaturized Bluetooth module, dramatically reduces the size of the wireless neural recording microsystem. The microsystem shows a less than 100 nV/Hz ultra-low noise level, about 10 mW low power consumption, and 9 × 7 × 5 mm3 small size. The neural recording ability was then demonstrated in saline and a chronic rat model. Because of its miniaturization, it can be applied to freely behaving small animals, such as rats. Its features of ultra-low noise and high bandwidth are conducive to low-amplitude neural signal recording, which may help advance neuroscientific discovery.

摘要

作为神经科学研究的基本工具,侵入性神经记录设备可以通过与主体大脑相连的电极获得高分辨率的神经元活动信号。现有的无线神经记录设备体积较大,或者需要外部大型设备进行无线供电,这限制了它们的应用。在这里,我们开发了一种超低噪声、低功耗和微型化的双通道无线神经记录微系统。采用双运算放大器(op-amps)的全差分前端结构,显著降低了噪声水平和功耗。分层微组装技术将晶圆级封装的运算放大器和微型蓝牙模块集成在一起,大大减小了无线神经记录微系统的尺寸。该微系统的噪声水平低于 100 nV/Hz,功耗约为 10 mW,体积为 9×7×5mm3。然后在盐溶液和慢性大鼠模型中展示了神经记录能力。由于其微型化,可以应用于自由活动的小动物,如大鼠。其超低噪声和高带宽的特点有利于对低幅度的神经信号进行记录,这可能有助于推进神经科学的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e67e/9405808/c8c8c5a5dc64/biosensors-12-00613-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验