Alimoussa Mohamed, Porebski Alice, Vandenbroucke Nicolas, El Fkihi Sanaa, Oulad Haj Thami Rachid
UR 4491, LISIC, Laboratoire d'Informatique Signal et Image de la Côte d'Opale, Univ. Littoral Côte d'Opale, F-62100 Calais, France.
Information Retrieval and Data Analytics Group, ADMIR Laboratory, Rabat IT Center, ENSIAS, Mohammed V University in Rabat, Rabat BP 713, Morocco.
J Imaging. 2022 Aug 8;8(8):217. doi: 10.3390/jimaging8080217.
Color texture classification aims to recognize patterns by the analysis of their colors and their textures. This process requires using descriptors to represent and discriminate the different texture classes. In most traditional approaches, these descriptors are used with a predefined setting of their parameters and computed from images coded in a chosen color space. The prior choice of a color space, a descriptor and its setting suited to a given application is a crucial but difficult problem that strongly impacts the classification results. To overcome this problem, this paper proposes a color texture representation that simultaneously takes into account the properties of several settings from different descriptors computed from images coded in multiple color spaces. Since the number of color texture features generated from this representation is high, a dimensionality reduction scheme by clustering-based sequential feature selection is applied to provide a compact hybrid multi-color space (CHMCS) descriptor. The experimental results carried out on five benchmark color texture databases with five color spaces and manifold settings of two texture descriptors show that combining different configurations always improves the accuracy compared to a predetermined configuration. On average, the CHMCS representation achieves 94.16% accuracy and outperforms deep learning networks and handcrafted color texture descriptors by over 5%, especially when the dataset is small.
颜色纹理分类旨在通过分析图案的颜色和纹理来识别图案。这个过程需要使用描述符来表示和区分不同的纹理类别。在大多数传统方法中,这些描述符在其参数的预定义设置下使用,并从在选定颜色空间中编码的图像中计算得出。对于给定应用,颜色空间、描述符及其设置的预先选择是一个关键但困难的问题,会对分类结果产生重大影响。为了克服这个问题,本文提出了一种颜色纹理表示方法,该方法同时考虑了从在多个颜色空间中编码的图像计算出的不同描述符的几种设置的属性。由于从这种表示中生成的颜色纹理特征数量很多,因此应用了基于聚类的顺序特征选择的降维方案,以提供一个紧凑的混合多颜色空间(CHMCS)描述符。在五个基准颜色纹理数据库上进行的实验结果表明,与预定配置相比,结合不同配置总能提高准确率。平均而言,CHMCS表示的准确率达到94.16%,比深度学习网络和手工制作的颜色纹理描述符高出5%以上,尤其是在数据集较小时。