Suppr超能文献

基于局部描述子的银屑病皮肤图像自动严重程度评估方法。

Automatic Scale Severity Assessment Method in Psoriasis Skin Images Using Local Descriptors.

出版信息

IEEE J Biomed Health Inform. 2020 Feb;24(2):577-585. doi: 10.1109/JBHI.2019.2910883. Epub 2019 Apr 15.

Abstract

Psoriasis is a chronic skin condition. Its clinical assessment involves four measures: erythema, scales, induration, and area. In this paper, we introduce a scale severity scoring framework for two-dimensional psoriasis skin images. Specifically, we leverage the bag-of-visual words (BoVWs) model for lesion feature extraction using superpixels as key points. BoVWs model is based on building a vocabulary with specific number of words (i.e., codebook size) by using a clustering algorithm with some local features extracted from a constructed set of key points. This is followed by three-class machine learning classifiers for scale scoring using support vector machine (SVM) and random forest. Besides, we examine eight different local color and texture descriptors, namely color histogram, local binary patterns, edge histogram descriptor, color layout descriptor, scalable color descriptor, color and edge directivity descriptor (CEDD), fuzzy color and texture histogram, and brightness and texture directionality histogram. Further, the selection of codebook and superpixel sizes are studied intensively. A psoriasis image set, consisting of 96 images, is used in this study. The conducted experiments show that color descriptors have the highest performance measures for scale severity scoring. This is followed by the combined color and texture descriptors, whereas texture-based descriptors come last. Moreover, K-means algorithm shows better results in vocabulary building than Gaussian mixed model, in terms of accuracy and computations time. Finally, the proposed method yields a scale severity scoring accuracy of 80.81% using the following setup: a superpixel of size [Formula: see text], a combined color and texture descriptor (i.e., CEDD), a constructed codebook of size 128 using K-means, and SVM for scale scoring.

摘要

银屑病是一种慢性皮肤病。其临床评估包括四项指标:红斑、鳞屑、硬结和面积。本文提出了一种二维银屑病皮肤图像的严重程度评分框架。具体来说,我们利用基于超像素关键点的视觉词袋(BoVWs)模型进行病变特征提取。BoVWs 模型基于使用聚类算法从构建的关键点集提取的一些局部特征来构建具有特定数量单词(即词汇大小)的词汇。然后,使用支持向量机(SVM)和随机森林进行三级机器学习分类器进行评分。此外,我们还研究了八种不同的局部颜色和纹理描述符,即颜色直方图、局部二值模式、边缘直方图描述符、颜色布局描述符、可扩展颜色描述符、颜色和边缘方向描述符(CEDD)、模糊颜色和纹理直方图以及亮度和纹理方向直方图。进一步深入研究了词汇和超像素大小的选择。本研究使用了一个由 96 张图像组成的银屑病图像集。进行的实验表明,颜色描述符在进行严重程度评分时具有最高的性能指标。其次是组合的颜色和纹理描述符,而基于纹理的描述符排名最后。此外,在词汇构建方面,K-means 算法的准确性和计算时间都优于高斯混合模型。最后,使用以下设置,提出的方法可以获得 80.81%的严重程度评分准确率:大小为[公式:见文本]的超像素、组合的颜色和纹理描述符(即 CEDD)、使用 K-means 构建的大小为 128 的构造词汇以及用于评分的 SVM。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验