文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Preparation and Characterization of Chitosan/TiO Composite Membranes as Adsorbent Materials for Water Purification.

作者信息

Spoială Angela, Ilie Cornelia-Ioana, Dolete Georgiana, Croitoru Alexa-Maria, Surdu Vasile-Adrian, Trușcă Roxana-Doina, Motelica Ludmila, Oprea Ovidiu-Cristian, Ficai Denisa, Ficai Anton, Andronescu Ecaterina, Dițu Lia-Mara

机构信息

Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania.

National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania.

出版信息

Membranes (Basel). 2022 Aug 20;12(8):804. doi: 10.3390/membranes12080804.


DOI:10.3390/membranes12080804
PMID:36005719
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9414885/
Abstract

As it is used in all aspects of human life, water has become more and more polluted. For the past few decades, researchers and scientists have focused on developing innovative composite adsorbent membranes for water purification. The purpose of this research was to synthesize a novel composite adsorbent membrane for the removal of toxic pollutants (namely heavy metals, antibiotics and microorganisms). The as-synthesized chitosan/TiO composite membranes were successfully prepared through a simple casting method. The TiO nanoparticle concentration from the composite membranes was kept low, at 1% and 5%, in order not to block the functional groups of chitosan, which are responsible for the adsorption of metal ions. Nevertheless, the concentration of TiO must be high enough to bestow good photocatalytic and antimicrobial activities. The synthesized composite membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and swelling capacity. The antibacterial activity was determined against four strains, spp., and . For the Gram-negative strains, a reduction of more than 5 units log CFU/mL was obtained. The adsorption capacity for heavy metal ions was maximum for the chitosan/TiO 1% composite membrane, the retention values being 297 mg/g for Pb and 315 mg/g for Cd ions. These values were higher for the chitosan/TiO 1% than for chitosan/TiO 5%, indicating that a high content of TiO can be one of the reasons for modest results reported previously in the literature. The photocatalytic degradation of a five-antibiotic mixture led to removal efficiencies of over 98% for tetracycline and meropenem, while for vancomycin and erythromycin the efficiencies were 86% and 88%, respectively. These values indicate that the chitosan/TiO composite membranes exhibit excellent photocatalytic activity under visible light irradiation. The obtained composite membranes can be used for complex water purification processes (removal of heavy metal ions, antibiotics and microorganisms).

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/99533382e8f3/membranes-12-00804-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/a06bf187fa90/membranes-12-00804-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/e38c1c5c025c/membranes-12-00804-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/255c294d3d85/membranes-12-00804-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/445c5db0b46c/membranes-12-00804-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/8cb4e7a0a241/membranes-12-00804-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/56ae6e7be683/membranes-12-00804-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/e932e78eb7af/membranes-12-00804-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/ef7593be290f/membranes-12-00804-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/47797fc1e013/membranes-12-00804-g009a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/a2d886f3985e/membranes-12-00804-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/fb4b45f6d9ab/membranes-12-00804-g011a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/b57fe1efe5a1/membranes-12-00804-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/8f7ab94ee228/membranes-12-00804-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/bddbd2ddcc42/membranes-12-00804-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/2d4b3ec1619b/membranes-12-00804-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/06c826c3e8d8/membranes-12-00804-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/99533382e8f3/membranes-12-00804-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/a06bf187fa90/membranes-12-00804-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/e38c1c5c025c/membranes-12-00804-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/255c294d3d85/membranes-12-00804-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/445c5db0b46c/membranes-12-00804-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/8cb4e7a0a241/membranes-12-00804-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/56ae6e7be683/membranes-12-00804-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/e932e78eb7af/membranes-12-00804-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/ef7593be290f/membranes-12-00804-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/47797fc1e013/membranes-12-00804-g009a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/a2d886f3985e/membranes-12-00804-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/fb4b45f6d9ab/membranes-12-00804-g011a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/b57fe1efe5a1/membranes-12-00804-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/8f7ab94ee228/membranes-12-00804-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/bddbd2ddcc42/membranes-12-00804-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/2d4b3ec1619b/membranes-12-00804-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/06c826c3e8d8/membranes-12-00804-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6e/9414885/99533382e8f3/membranes-12-00804-g017.jpg

相似文献

[1]
Preparation and Characterization of Chitosan/TiO Composite Membranes as Adsorbent Materials for Water Purification.

Membranes (Basel). 2022-8-20

[2]
The Development of Alginate/Ag NPs/Caffeic Acid Composite Membranes as Adsorbents for Water Purification.

Membranes (Basel). 2023-6-9

[3]
Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes for heavy metal removal.

J Hazard Mater. 2003-2-28

[4]
Chitosan/Graphene Oxide Nanocomposite Membranes as Adsorbents with Applications in Water Purification.

Materials (Basel). 2020-4-4

[5]
Tetracycline hydrochloride degradation by heterogeneous photocatalysis using TiO(P25) immobilized in biopolymer (chitosan) under UV irradiation.

Water Sci Technol. 2020-10

[6]
Preparation and performance evaluation of chitosan/polyvinylpyrrolidone/polyvinyl alcohol electrospun nanofiber membrane for heavy metal ions and organic pollutants removal.

Int J Biol Macromol. 2022-6-15

[7]
Magnetic ion-imprinted polyacrylonitrile-chitosan electro-spun nanofibrous membrane as recyclable adsorbent with selective heavy metal removal and antibacterial fouling in water treatment.

Int J Biol Macromol. 2023-6-30

[8]
Crosslinked chitosan/poly(vinyl alcohol) nanofibers functionalized by ionic liquid for heavy metal ions removal.

Int J Biol Macromol. 2022-1-15

[9]
Effects of Different TiO Nanoparticles Concentrations on the Physical and Antibacterial Activities of Chitosan-Based Coating Film.

Nanomaterials (Basel). 2020-7-13

[10]
Chitosan/polypropylene glycol hydrogel composite film designed with TiO nanoparticles: A promising scaffold of biomedical applications.

Int J Biol Macromol. 2020-11-15

引用本文的文献

[1]
Fabrication and characterization of a chitosan/cyclodextrin/TiO-NPs composite for preservation of avocados.

RSC Adv. 2024-8-16

[2]
Chitosan-Based Biomaterial in Wound Healing: A Review.

Cureus. 2024-2-28

[3]
Phyto-fabricated ZnO nanoparticles for anticancer, photo-antimicrobial effect on carbapenem-resistant/sensitive Pseudomonas aeruginosa and removal of tetracycline.

Bioprocess Biosyst Eng. 2024-8

[4]
Influence of Lavender Essential Oil on the Physical and Antibacterial Properties of Chitosan Sponge for Hemostatic Applications.

Int J Mol Sci. 2023-11-14

[5]
Chitosan-Based Biomaterials for Hemostatic Applications: A Review of Recent Advances.

Int J Mol Sci. 2023-6-23

[6]
Pb(II) Uptake from Polluted Irrigation Water Using Anatase TiO Nanoadsorbent.

Molecules. 2023-6-7

[7]
The Development of Alginate/Ag NPs/Caffeic Acid Composite Membranes as Adsorbents for Water Purification.

Membranes (Basel). 2023-6-9

[8]
Application of Box-Behnken Design to Optimize Phosphate Adsorption Conditions from Water onto Novel Adsorbent CS-ZL/ZrO/FeO: Characterization, Equilibrium, Isotherm, Kinetic, and Desorption Studies.

Int J Mol Sci. 2023-6-5

[9]
Recent Advances in Carbon Nitride-Based S-scheme Photocatalysts for Solar Energy Conversion.

Materials (Basel). 2023-5-15

[10]
Synergistic Antimicrobial Activity of Magnetite and Vancomycin-Loaded Mesoporous Silica Embedded in Alginate Films.

Gels. 2023-4-2

本文引用的文献

[1]
The preparation of three-dimensional flower-like TiO/TiOF photocatalyst and its efficient degradation of tetracycline hydrochloride.

RSC Adv. 2021-4-21

[2]
Design and Preparation of Biomass-Derived Activated Carbon Loaded TiO Photocatalyst for Photocatalytic Degradation of Reactive Red 120 and Ofloxacin.

Polymers (Basel). 2022-2-23

[3]
Removal of Pb (II) and V (V) from aqueous solution by glutaraldehyde crosslinked chitosan and nanocomposites.

Chemosphere. 2022-6

[4]
Removal of Ionic Dyes by Nanofiber Membrane Functionalized with Chitosan and Egg White Proteins: Membrane Preparation and Adsorption Efficiency.

Membranes (Basel). 2022-1-1

[5]
Chemical Modification of Chitosan for Removal of Pb(II) Ions from Aqueous Solutions.

Materials (Basel). 2021-12-20

[6]
Sustainable Development of Magnetic Chitosan Core-Shell Network for the Removal of Organic Dyes from Aqueous Solutions.

Materials (Basel). 2021-12-13

[7]
Synthesis and characterization of ternary chitosan-TiO-ZnO over graphene for photocatalytic degradation of tetracycline from pharmaceutical wastewater.

Sci Rep. 2021-12-17

[8]
Antibacterial Biodegradable Films Based on Alginate with Silver Nanoparticles and Lemongrass Essential Oil-Innovative Packaging for Cheese.

Nanomaterials (Basel). 2021-9-13

[9]
Hybrid Composite Membrane of Phosphorylated Chitosan/Poly (Vinyl Alcohol)/Silica as a Proton Exchange Membrane.

Membranes (Basel). 2021-8-31

[10]
Zinc Oxide Nanoparticles for Water Purification.

Materials (Basel). 2021-8-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索