Suppr超能文献

大型荷兰社区样本中的有害饮酒表型。

Harmful Drinking Phenotype in a Large Dutch Community Sample.

机构信息

Department of Human Performance, The Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg 3769 DE, The Netherlands.

Department of Weapon Systems, The Netherlands Organisation for Applied Scientific Research (TNO), The Hague 2597 AK, The Netherlands.

出版信息

Alcohol Alcohol. 2022 Nov 11;57(6):696-705. doi: 10.1093/alcalc/agac041.

Abstract

AIMS

Harmful drinking patterns are shaped by a broad complex interaction of factors, societal and individual, psychological and behavioral. Although previous studies have focused on a few variables at a time, the current study simultaneously examines a large number of variables in order to create a comprehensive view (i.e. phenotype) of harmful drinking, and to rank the main predictors of harmful and non-harmful drinking by order of importance.

METHODS

We surveyed a large sample of Dutch adults about their habitual drinking characteristics and attitudes, perceptions and motives for drinking. We fed 45 variables into a random forest machine learning model to identify predictors for (1) drinking within and in excess of Dutch guideline recommendations and (2) harmful and non-harmful drinking.

RESULTS

In both models, respondents' subjective perceptions of 'responsible drinking', both per occasion and per week, showed the strongest predictive potential for different drinking phenotypes. The next strongest factors were respondents' reason for drinking, motives for drinking and age. Other variables, such as drinking location, knowledge about alcohol-related health risks and consumption of different beverage types, were not strong predictors of drinking phenotypes.

CONCLUSIONS

Although the direction of the relationship is unclear from the findings, they suggest that interventions and policy measures aimed at individuals and social norms around drinking may offer promise for reducing harmful drinking. Messaging and promotion of drinking guidelines should be tailored with this in mind.

摘要

目的

有害的饮酒模式是由广泛的社会和个体、心理和行为等多种因素复杂相互作用形成的。尽管以前的研究一次只关注几个变量,但本研究同时考察了大量变量,以便对有害饮酒进行全面的观察(即表型),并按重要性顺序对有害和非有害饮酒的主要预测因素进行排序。

方法

我们调查了大量荷兰成年人的习惯性饮酒特征、态度、对饮酒的看法、感知和动机。我们将 45 个变量输入随机森林机器学习模型,以确定(1)符合和超出荷兰指南建议的饮酒量,以及(2)有害和非有害饮酒的预测因素。

结果

在这两个模型中,受访者对“负责任饮酒”的主观感知,无论是每次饮酒还是每周饮酒,对不同的饮酒表型都显示出最强的预测潜力。其次是受访者饮酒的原因、饮酒的动机和年龄。其他变量,如饮酒地点、对酒精相关健康风险的了解以及不同饮料类型的消费,并不是饮酒表型的强预测因素。

结论

尽管从研究结果中无法明确关系的方向,但它们表明,针对个人和饮酒社会规范的干预措施和政策措施可能为减少有害饮酒提供希望。在制定相关信息和推广饮酒指南时,应考虑到这一点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e03/9651985/6e9753000434/agac041f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验