Suppr超能文献

钴量子点作为超窄带隙二噁英连接共价有机框架中的电子收集器,用于促进光催化太阳能到燃料的转化。

Cobalt quantum dots as electron collectors in ultra-narrow bandgap dioxin linked covalent organic frameworks for boosting photocatalytic solar-to-fuel conversion.

作者信息

Dong Shaofeng, Tan Zunkun, Chen Qiaoshan, Huang Guocheng, Wu Ling, Bi Jinhong

机构信息

Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China.

Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China.

出版信息

J Colloid Interface Sci. 2022 Dec 15;628(Pt B):573-582. doi: 10.1016/j.jcis.2022.08.047. Epub 2022 Aug 11.

Abstract

Photocatalysis offers a sustainable paradigm for solar-to-fuel conversion because it conflates the merits of renewable solar energy and reusable catalysts. However, the seek for robust photocatalysts that can utilize the full visible light spectrum remains challenging. Herein, cobalt quantum dots (Co QDs) were integrated into ultra-narrow bandgap dioxin linked covalent organic frameworks (COF-318) for photocatalytic solar-to-fuel conversion under full spectrum of visible light irradiation. The optimal Co-COF exhibited superior photocatalytic CO reduction performance, affording a CO yield of 4232 µmol∙g∙h and H evolution of 6611 µmol∙g∙h. Specifically, Co QDs played a crucial role in boosting the photocatalytic performance, which acted as electron collectors to capture the photoinduced electrons and then conveyed them to CO molecules. Moreover, the Co QDs modification significantly improved the CO adsorption and activation capacity, as well as prolonging the lifetime of photogenerated carriers. This work reveals an operable pathway for fabricating promising photocatalyst for visible-light-driven solar-to-fuel generation and provides insight into the impact of the integration of Co QDs on COF-based photocatalysts.

摘要

光催化为太阳能到燃料的转化提供了一种可持续的模式,因为它兼具可再生太阳能和可重复使用催化剂的优点。然而,寻找能够利用整个可见光谱的强大光催化剂仍然具有挑战性。在此,钴量子点(Co QDs)被整合到超窄带隙二恶英连接的共价有机框架(COF-318)中,用于在全光谱可见光照射下进行光催化太阳能到燃料的转化。最佳的Co-COF表现出优异的光催化CO还原性能,CO产率为4232 µmol∙g∙h,H析出量为6611 µmol∙g∙h。具体而言,Co QDs在提高光催化性能方面发挥了关键作用,它作为电子收集器捕获光生电子,然后将其传递给CO分子。此外,Co QDs修饰显著提高了CO的吸附和活化能力,并延长了光生载流子的寿命。这项工作揭示了一条制造用于可见光驱动太阳能到燃料生成的有前景的光催化剂的可行途径,并深入了解了Co QDs整合对基于COF的光催化剂的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验