Epilepsy Center, University Medical Center Freiburg, Freiburg, Germany.
Spemann Graduate School of Biology and Medicine, Freiburg, Germany.
Epilepsia. 2023 Dec;64 Suppl 4:S47-S58. doi: 10.1111/epi.17401. Epub 2022 Sep 11.
With the advent of ultra-long-term recordings for monitoring of epilepsies, the interpretation of results of isolated electroencephalographic (EEG) recordings covering only selected brain regions attracts considerable interest. In this context, the question arises of whether detected ictal EEG patterns correspond to clinically manifest seizures or rather to purely electrographic events, that is, subclinical events.
EEG patterns from 268 clinical seizures and 252 subclinical electrographic events from 50 patients undergoing video-EEG monitoring were analyzed. Features extracted included predominant frequency band, duration, association with rhythmic muscle artifacts, spatial extent, and propagation patterns. Classification using logistic regression was performed based on data from the whole dataset of 10-20 system EEG recordings and from a subset of two temporal electrode contacts.
Correct separation of clinically manifest and purely electrographic events based on 10-20 system EEG recordings was possible in up to 83.8% of events, depending on the combination of features included. Correct classification based on two-channel recordings was only slightly inferior, achieving 78.6% accuracy; 74.4% and 74.8%, respectively, of events could be correctly classified when using duration alone with either electrode set, although classification accuracies were lower for some subgroups of seizures, particularly focal aware seizures and epileptic arousals.
A correct classification of subclinical versus clinical EEG events was possible in 74%-83% of events based on full EEG recordings, and in 74%-78% when considering only a subset of two electrodes, matching the channel number available from new implantable diagnostic devices. This is a promising outcome, suggesting that ultra-long-term low-channel EEG recordings may provide sufficient information for objective seizure diaries. Intraindividual optimization using high numbers of ictal events may further improve separation, provided that supervised learning with external validation is feasible.
随着超长期癫痫监测记录的出现,对仅覆盖选定脑区的孤立脑电图(EEG)记录结果的解释引起了相当大的兴趣。在这种情况下,出现了一个问题,即检测到的发作期 EEG 模式是否与临床明显的发作相对应,或者更确切地说,与纯粹的电描记事件(即亚临床事件)相对应。
对 50 例接受视频-EEG 监测的患者的 268 例临床发作和 252 例亚临床电描记事件的 EEG 模式进行了分析。提取的特征包括优势频带、持续时间、与节律性肌肉伪迹的关联、空间范围和传播模式。使用逻辑回归进行分类,分类依据是来自 10-20 系统 EEG 记录的整个数据集和两个颞部电极触点子集的数据。
基于 10-20 系统 EEG 记录,在多达 83.8%的情况下,可以正确区分临床明显和纯粹的电描记事件,具体取决于所包含的特征组合。基于双通道记录的正确分类略逊一筹,准确率为 78.6%;当使用两个电极组中的任何一个电极组的持续时间时,分别有 74.4%和 74.8%的事件可以正确分类,尽管对于某些亚组的发作,分类准确率较低,尤其是局灶性意识发作和癫痫发作。
基于完整的 EEG 记录,在 74%-83%的事件中可以正确分类亚临床与临床 EEG 事件,而在仅考虑两个电极子集的情况下,在 74%-78%的事件中可以正确分类,这与新型植入式诊断设备的通道数量相匹配。这是一个有希望的结果,表明超长期低通道 EEG 记录可能为客观发作日记提供足够的信息。如果可行的话,使用外部验证的监督学习进行个体内优化可以进一步提高分离度。