Suppr超能文献

个体发作指纹:将运动测量与癫痫患者的超长期皮下脑电图相结合。

The Individual Ictal Fingerprint: Combining Movement Measures With Ultra Long-Term Subcutaneous EEG in People With Epilepsy.

作者信息

Kjaer Troels W, Remvig Line S, Helge Asbjoern W, Duun-Henriksen Jonas

机构信息

Center of Neurophysiology, Department of Neurology, Zealand University Hospital, Roskilde, Denmark.

Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.

出版信息

Front Neurol. 2021 Dec 23;12:718329. doi: 10.3389/fneur.2021.718329. eCollection 2021.

Abstract

Epileptic seizures are caused by abnormal brain wave hypersynchronization leading to a range of signs and symptoms. Tools for detecting seizures in everyday life typically focus on cardiac rhythm, electrodermal activity, or movement (EMG, accelerometry); however, these modalities are not very effective for non-motor seizures. Ultra long-term subcutaneous EEG-devices can detect the electrographic changes that do not depend on clinical changes. Nonetheless, this also means that it is not possible to assess whether a seizure is clinical or subclinical based on an EEG signal alone. Therefore, we combine EEG and movement-related modalities in this work. We focus on whether it is possible to define an individual "multimodal ictal fingerprint" which can be exploited in different epilepsy management purposes. This study used ultra long-term data from an outpatient monitoring trial of persons with temporal lobe epilepsy obtained with a subcutaneous EEG recording system. Subcutaneous EEG, an EMG estimate and chest-mounted accelerometry were extracted from four persons showing more than 10 well-defined electrographic seizures each. Numerous features were computed from all three modalities. Based on these, the Gini impurity measure of a Random Forest classifier was used to select the most discriminative features for the ictal fingerprint. A total of 74 electrographic seizures were analyzed. The optimal individual ictal fingerprints included features extracted from all three tested modalities: an acceleration component; the power of the estimated EMG activity; and the relative power in the delta (0.5-4 Hz), low theta (4-6 Hz), and high theta (6-8 Hz) bands of the subcutaneous EEG. Multimodal ictal fingerprints were established for all persons, clustering seizures within persons, while separating seizures across persons. The existence of multimodal ictal fingerprints illustrates the benefits of combining multiple modalities such as EEG, EMG, and accelerometry in future epilepsy management. Multimodal ictal fingerprints could be used by doctors to get a better understanding of the individual seizure semiology of people with epilepsy. Furthermore, the multimodal ictal fingerprint gives a better understanding of how seizures manifest simultaneously in different modalities. A knowledge that could be used to improve seizure acknowledgment when reviewing EEG without video.

摘要

癫痫发作是由异常的脑电波超同步化引起的,会导致一系列体征和症状。日常生活中用于检测癫痫发作的工具通常聚焦于心律、皮肤电活动或运动(肌电图、加速度测量);然而,这些方式对于非运动性癫痫发作的效果并不理想。超长期皮下脑电图设备可以检测不依赖于临床变化的电图变化。尽管如此,这也意味着仅根据脑电图信号无法评估癫痫发作是临床性的还是亚临床性的。因此,我们在这项工作中结合了脑电图和与运动相关的方式。我们关注是否有可能定义一种个体“多模态发作指纹”,可用于不同的癫痫管理目的。本研究使用了来自颞叶癫痫患者门诊监测试验的超长期数据,这些数据是通过皮下脑电图记录系统获得的。从四名每人显示出超过10次明确电图癫痫发作的患者中提取了皮下脑电图、肌电图估计值和胸部佩戴的加速度测量数据。从所有三种方式中计算出了大量特征。基于这些,使用随机森林分类器的基尼不纯度度量来选择发作指纹的最具判别力的特征。总共分析了74次电图癫痫发作。最佳的个体发作指纹包括从所有三种测试方式中提取的特征:一个加速度分量;估计的肌电活动功率;以及皮下脑电图在δ(0.5 - 4Hz)、低θ(4 - 6Hz)和高θ(6 - 8Hz)频段的相对功率。为所有患者建立了多模态发作指纹,在个体内对癫痫发作进行聚类,同时区分个体间的癫痫发作。多模态发作指纹的存在说明了在未来癫痫管理中结合脑电图、肌电图和加速度测量等多种方式的益处。医生可以使用多模态发作指纹来更好地理解癫痫患者的个体发作症状学。此外,多模态发作指纹能更好地理解癫痫发作如何在不同方式中同时表现出来。这一知识可用于在查看无视频脑电图时改善对癫痫发作的识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c750/8733463/ddf9bdb5069e/fneur-12-718329-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验