Suppr超能文献

利用杂交 ssDNA 修复模板和小分子鸡尾酒在原代细胞中进行高效基因组工程。

High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails.

机构信息

Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.

Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.

出版信息

Nat Biotechnol. 2023 Apr;41(4):521-531. doi: 10.1038/s41587-022-01418-8. Epub 2022 Aug 25.

Abstract

Enhancing CRISPR-mediated site-specific transgene insertion efficiency by homology-directed repair (HDR) using high concentrations of double-stranded DNA (dsDNA) with Cas9 target sequences (CTSs) can be toxic to primary cells. Here, we develop single-stranded DNA (ssDNA) HDR templates (HDRTs) incorporating CTSs with reduced toxicity that boost knock-in efficiency and yield by an average of around two- to threefold relative to dsDNA CTSs. Using small-molecule combinations that enhance HDR, we could further increase knock-in efficiencies by an additional roughly two- to threefold on average. Our method works across a variety of target loci, knock-in constructs and primary human cell types, reaching HDR efficiencies of >80-90%. We demonstrate application of this approach for both pathogenic gene variant modeling and gene-replacement strategies for IL2RA and CTLA4 mutations associated with Mendelian disorders. Finally, we develop a good manufacturing practice (GMP)-compatible process for nonviral chimeric antigen receptor-T cell manufacturing, with knock-in efficiencies (46-62%) and yields (>1.5 × 10 modified cells) exceeding those of conventional approaches.

摘要

通过同源定向修复(HDR)利用 Cas9 靶序列(CTS)的高浓度双链 DNA(dsDNA)来增强 CRISPR 介导的基因定点插入效率,可能对原代细胞有毒性。在这里,我们开发了包含毒性降低的 CTS 的单链 DNA(ssDNA)HDR 模板(HDRT),相对于 dsDNA CTS,平均提高了约 2 到 3 倍的基因敲入效率和产量。使用可增强 HDR 的小分子组合,我们还可以将基因敲入效率平均进一步提高约 2 到 3 倍。我们的方法适用于多种靶基因座、基因敲入构建体和原代人类细胞类型,达到>80-90%的 HDR 效率。我们证明了这种方法在致病基因突变模型和与孟德尔疾病相关的 IL2RA 和 CTLA4 突变的基因替换策略中的应用。最后,我们开发了一种用于非病毒嵌合抗原受体-T 细胞制造的良好生产规范(GMP)兼容的工艺,基因敲入效率(46-62%)和产量(>1.5×10 个修饰细胞)超过了传统方法。

相似文献

1
High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails.
Nat Biotechnol. 2023 Apr;41(4):521-531. doi: 10.1038/s41587-022-01418-8. Epub 2022 Aug 25.
3
Identifying optimal conditions for precise knock-in of exogenous DNA into the zebrafish genome.
Development. 2025 Jun 15;152(12). doi: 10.1242/dev.204571. Epub 2025 Jun 19.
6
Efficient nonviral integration of large transgenes into human T cells using Cas9-CLIPT.
Mol Ther Methods Clin Dev. 2025 Feb 18;33(1):101437. doi: 10.1016/j.omtm.2025.101437. eCollection 2025 Mar 13.
8
Characterization of targeted knock-in achieved via tandem paired nicking mediated by CRISPR/Cas9 nickases.
Methods. 2025 Sep;241:184-195. doi: 10.1016/j.ymeth.2025.06.004. Epub 2025 Jun 10.
9
Gene editing and CRISPR-dependent homology-mediated end joining.
Exp Mol Med. 2025 Jul;57(7):1409-1418. doi: 10.1038/s12276-025-01442-z. Epub 2025 Jul 31.
10
Removal of TREX1 activity enhances CRISPR-Cas9-mediated homologous recombination.
Nat Biotechnol. 2024 Aug 12. doi: 10.1038/s41587-024-02356-3.

引用本文的文献

3
Exploiting TCR Repertoire Analysis to Select Therapeutic TCRs for Cancer Immunotherapy.
Cells. 2025 Aug 7;14(15):1223. doi: 10.3390/cells14151223.
5
A Singular Base Editing Platform for Polyfunctional Multiplex Engineering of Immune Cells.
bioRxiv. 2025 Jul 16:2025.07.11.664404. doi: 10.1101/2025.07.11.664404.
6
Emerging CAR immunotherapies: broadening therapeutic horizons beyond cancer.
Clin Exp Med. 2025 Aug 4;25(1):274. doi: 10.1007/s10238-025-01820-x.
7
Gene editing and CRISPR-dependent homology-mediated end joining.
Exp Mol Med. 2025 Jul;57(7):1409-1418. doi: 10.1038/s12276-025-01442-z. Epub 2025 Jul 31.
8
[Biomaterials of different sizes for enhanced adoptive cell transfer therapy in solid tumors].
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2025 Jul 15;54(4):469-478. doi: 10.3724/zdxbyxb-2024-0651.
9
CRISPR-based therapeutic genome editing for inherited blood disorders.
Nat Rev Drug Discov. 2025 Jul 14. doi: 10.1038/s41573-025-01236-y.
10
Single-stranded HDR templates with truncated Cas12a-binding sequences improve knock-in efficiencies in primary human T cells.
Mol Ther Nucleic Acids. 2025 May 19;36(2):102568. doi: 10.1016/j.omtn.2025.102568. eCollection 2025 Jun 10.

本文引用的文献

1
Pharmacological interventions enhance virus-free generation of -replaced CAR T cells.
Mol Ther Methods Clin Dev. 2022 Apr 12;25:311-330. doi: 10.1016/j.omtm.2022.03.018. eCollection 2022 Jun 9.
2
3
HLA-independent T cell receptors for targeting tumors with low antigen density.
Nat Med. 2022 Feb;28(2):345-352. doi: 10.1038/s41591-021-01621-1. Epub 2022 Jan 13.
4
Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing.
Nat Biotechnol. 2022 May;40(5):731-740. doi: 10.1038/s41587-021-01133-w. Epub 2021 Dec 9.
5
A first-in-class Polymerase Theta Inhibitor selectively targets Homologous-Recombination-Deficient Tumors.
Nat Cancer. 2021 Jun;2(6):598-610. doi: 10.1038/s43018-021-00203-x. Epub 2021 Jun 17.
7
Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma.
N Engl J Med. 2021 Feb 25;384(8):705-716. doi: 10.1056/NEJMoa2024850.
8
9
CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia.
N Engl J Med. 2021 Jan 21;384(3):252-260. doi: 10.1056/NEJMoa2031054. Epub 2020 Dec 5.
10
Rational Selection of CRISPR-Cas9 Guide RNAs for Homology-Directed Genome Editing.
Mol Ther. 2021 Mar 3;29(3):1057-1069. doi: 10.1016/j.ymthe.2020.10.006. Epub 2020 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验