Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.
Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
Nat Biotechnol. 2023 Apr;41(4):521-531. doi: 10.1038/s41587-022-01418-8. Epub 2022 Aug 25.
Enhancing CRISPR-mediated site-specific transgene insertion efficiency by homology-directed repair (HDR) using high concentrations of double-stranded DNA (dsDNA) with Cas9 target sequences (CTSs) can be toxic to primary cells. Here, we develop single-stranded DNA (ssDNA) HDR templates (HDRTs) incorporating CTSs with reduced toxicity that boost knock-in efficiency and yield by an average of around two- to threefold relative to dsDNA CTSs. Using small-molecule combinations that enhance HDR, we could further increase knock-in efficiencies by an additional roughly two- to threefold on average. Our method works across a variety of target loci, knock-in constructs and primary human cell types, reaching HDR efficiencies of >80-90%. We demonstrate application of this approach for both pathogenic gene variant modeling and gene-replacement strategies for IL2RA and CTLA4 mutations associated with Mendelian disorders. Finally, we develop a good manufacturing practice (GMP)-compatible process for nonviral chimeric antigen receptor-T cell manufacturing, with knock-in efficiencies (46-62%) and yields (>1.5 × 10 modified cells) exceeding those of conventional approaches.
通过同源定向修复(HDR)利用 Cas9 靶序列(CTS)的高浓度双链 DNA(dsDNA)来增强 CRISPR 介导的基因定点插入效率,可能对原代细胞有毒性。在这里,我们开发了包含毒性降低的 CTS 的单链 DNA(ssDNA)HDR 模板(HDRT),相对于 dsDNA CTS,平均提高了约 2 到 3 倍的基因敲入效率和产量。使用可增强 HDR 的小分子组合,我们还可以将基因敲入效率平均进一步提高约 2 到 3 倍。我们的方法适用于多种靶基因座、基因敲入构建体和原代人类细胞类型,达到>80-90%的 HDR 效率。我们证明了这种方法在致病基因突变模型和与孟德尔疾病相关的 IL2RA 和 CTLA4 突变的基因替换策略中的应用。最后,我们开发了一种用于非病毒嵌合抗原受体-T 细胞制造的良好生产规范(GMP)兼容的工艺,基因敲入效率(46-62%)和产量(>1.5×10 个修饰细胞)超过了传统方法。