Suppr超能文献

一种自动化深度学习方法和新型心指数,用于从简单的放射影像中检测犬心脏增大。

An automated deep learning method and novel cardiac index to detect canine cardiomegaly from simple radiography.

机构信息

Genome & Health Data Lab, School of Public Health, Seoul National University, Seoul, Korea.

出版信息

Sci Rep. 2022 Aug 25;12(1):14494. doi: 10.1038/s41598-022-18822-4.

Abstract

Since most of degenerative canine heart diseases accompany cardiomegaly, early detection of cardiac enlargement is main priority healthcare issue for dogs. In this study, we developed a new deep learning-based radiographic index quantifying canine heart size using retrospective data. The proposed "adjusted heart volume index" (aHVI) was calculated as the total area of the heart multiplied by the heart's height and divided by the fourth thoracic vertebral body (T4) length from simple lateral X-rays. The algorithms consist of segmentation and measurements. For semantic segmentation, we used 1000 dogs' radiographic images taken between Jan 2018 and Aug 2020 at Seoul National University Veterinary Medicine Teaching Hospital. The tversky loss functions with multiple hyperparameters were used to capture the size-unbalanced regions of heart and T4. The aHVI outperformed the current clinical standard in predicting cardiac enlargement, a common but often fatal health condition for small old dogs.

摘要

由于大多数退行性犬心脏病伴有心脏增大,因此早期检测心脏增大是犬类主要的优先医疗保健问题。在这项研究中,我们使用回顾性数据开发了一种新的基于深度学习的放射学指数,用于量化犬的心脏大小。提出的“调整后的心脏体积指数”(aHVI)是通过简单的侧位 X 射线计算的,方法是将心脏的总面积乘以心脏的高度,然后除以第四胸椎(T4)的长度。该算法包括分割和测量。对于语义分割,我们使用了 2018 年 1 月至 2020 年 8 月在首尔国立大学兽医学院教学医院拍摄的 1000 只狗的放射图像。使用具有多个超参数的 tversky 损失函数来捕获大小不平衡的心脏和 T4 区域。与当前的临床标准相比,aHVI 在预测心脏增大方面表现更好,心脏增大是小型老年犬常见但通常致命的健康状况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1e9/9411130/a7fac31a499c/41598_2022_18822_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验