Suppr超能文献

使用产超广谱β-内酰胺酶病例确定抗生素使用目标以管理抗生素耐药性:一种阈值逻辑建模方法。

Identifying Antibiotic Use Targets for the Management of Antibiotic Resistance Using an Extended-Spectrum β-Lactamase-Producing Case: A Threshold Logistic Modeling Approach.

作者信息

Aldeyab Mamoon A, Bond Stuart E, Conway Barbara R, Lee-Milner Jade, Sarma Jayanta B, Lattyak William J

机构信息

Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK.

Pharmacy Department, Mid Yorkshire Hospitals NHS Trust, Wakefield WF1 4DG, UK.

出版信息

Antibiotics (Basel). 2022 Aug 17;11(8):1116. doi: 10.3390/antibiotics11081116.

Abstract

The aim of this study was to develop a logistic modeling concept to improve understanding of the relationship between antibiotic use thresholds and the incidence of resistant pathogens. A combined approach of nonlinear modeling and logistic regression, named threshold logistic, was used to identify thresholds and risk scores in hospital-level antibiotic use associated with hospital-level incidence rates of extended-spectrum β-lactamase (ESBL)-producing (). Threshold logistic models identified thresholds for fluoroquinolones (61.1 DDD/1000 occupied bed days (OBD)) and third-generation cephalosporins (9.2 DDD/1000 OBD) to control hospital ESBL-producing incidence. The 60th percentile of ESBL-producing was determined as the cutoff for defining high incidence rates. Threshold logistic analysis showed that for every one-unit increase in fluoroquinolones and third-generation cephalosporins above 61.1 and 9.2 DDD/1000 OBD levels, the average odds of the ESBL-producing incidence rate being ≥60th percentile of historical levels increased by 4.5% and 12%, respectively. Threshold logistic models estimated the risk scores of exceeding the 60th percentile of a historical ESBL-producing incidence rate. Threshold logistic models can help hospitals in defining critical levels of antibiotic use and resistant pathogen incidence and provide targets for antibiotic consumption and a near real-time performance monitoring feedback system.

摘要

本研究的目的是开发一种逻辑建模概念,以增进对抗生素使用阈值与耐药病原体发生率之间关系的理解。一种将非线性建模与逻辑回归相结合的方法,即阈值逻辑回归,被用于确定与医院层面产超广谱β-内酰胺酶(ESBL)病原体的发生率相关的医院层面抗生素使用的阈值和风险评分。阈值逻辑回归模型确定了氟喹诺酮类(61.1限定日剂量/1000占用床日(OBD))和第三代头孢菌素(9.2限定日剂量/1000 OBD)的阈值,以控制医院中产ESBL病原体的发生率。将产ESBL病原体发生率的第60百分位数确定为定义高发生率的临界值。阈值逻辑回归分析表明,氟喹诺酮类和第三代头孢菌素的使用量每高于61.1和9.2限定日剂量/1000 OBD水平一个单位,产ESBL病原体发生率≥历史水平第60百分位数的平均比值分别增加4.5%和12%。阈值逻辑回归模型估计了超过历史产ESBL病原体发生率第60百分位数的风险评分。阈值逻辑回归模型可以帮助医院确定抗生素使用和耐药病原体发生率的临界水平,并提供抗生素消耗的目标以及一个近乎实时的绩效监测反馈系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f5b/9405284/be87f4e9d498/antibiotics-11-01116-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验