Suppr超能文献

用于抗菌药物耐药性预测的人工智能:实际应用面临的挑战与机遇

Artificial Intelligence for Antimicrobial Resistance Prediction: Challenges and Opportunities towards Practical Implementation.

作者信息

Ali Tabish, Ahmed Sarfaraz, Aslam Muhammad

机构信息

Department of Civil & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.

Department of Electronics & Computer Engineering, Hanyang University, Seoul 04763, Republic of Korea.

出版信息

Antibiotics (Basel). 2023 Mar 6;12(3):523. doi: 10.3390/antibiotics12030523.

Abstract

Antimicrobial resistance (AMR) is emerging as a potential threat to many lives worldwide. It is very important to understand and apply effective strategies to counter the impact of AMR and its mutation from a medical treatment point of view. The intersection of artificial intelligence (AI), especially deep learning/machine learning, has led to a new direction in antimicrobial identification. Furthermore, presently, the availability of huge amounts of data from multiple sources has made it more effective to use these artificial intelligence techniques to identify interesting insights into AMR genes such as new genes, mutations, drug identification, conditions favorable to spread, and so on. Therefore, this paper presents a review of state-of-the-art challenges and opportunities. These include interesting input features posing challenges in use, state-of-the-art deep-learning/machine-learning models for robustness and high accuracy, challenges, and prospects to apply these techniques for practical purposes. The paper concludes with the encouragement to apply AI to the AMR sector with the intention of practical diagnosis and treatment, since presently most studies are at early stages with minimal application in the practice of diagnosis and treatment of disease.

摘要

抗菌药物耐药性(AMR)正在成为对全球许多生命的潜在威胁。从医学治疗的角度理解并应用有效的策略来应对AMR的影响及其突变非常重要。人工智能(AI)的交叉领域,尤其是深度学习/机器学习,为抗菌药物鉴定带来了新方向。此外,目前来自多个来源的大量数据的可用性使得利用这些人工智能技术来识别AMR基因的有趣见解(如新基因、突变、药物鉴定、有利于传播的条件等)变得更加有效。因此,本文对当前的挑战和机遇进行了综述。这些挑战和机遇包括在使用中构成挑战的有趣输入特征、用于稳健性和高精度的当前最先进的深度学习/机器学习模型、将这些技术应用于实际目的的挑战和前景。本文最后鼓励将AI应用于AMR领域以实现实际的诊断和治疗,因为目前大多数研究仍处于早期阶段,在疾病诊断和治疗实践中的应用极少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca4/10044311/f660587c7de1/antibiotics-12-00523-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验