Medicine Preventive-Infection Control Team, Hospital Vega Baja, Orihuela, Spain.
The Wellcome Trust Liverpool-Glasgow Centre for Global Health Research, Liverpool, UK.
Nat Microbiol. 2019 Jul;4(7):1160-1172. doi: 10.1038/s41564-019-0410-0. Epub 2019 Apr 8.
Balancing access to antibiotics with the control of antibiotic resistance is a global public health priority. At present, antibiotic stewardship is informed by a 'use it and lose it' principle, in which antibiotic use by the population is linearly related to resistance rates. However, theoretical and mathematical models suggest that use-resistance relationships are nonlinear. One explanation for this is that resistance genes are commonly associated with 'fitness costs' that impair the replication or transmissibility of the pathogen. Therefore, resistant genes and pathogens may only gain a survival advantage where antibiotic selection pressures exceed critical thresholds. These thresholds may provide quantitative targets for stewardship-optimizing the control of resistance while avoiding over-restriction of antibiotics. Here, we evaluated the generalizability of a nonlinear time-series analysis approach for identifying thresholds using historical prescribing and microbiological data from five populations in Europe. We identified minimum thresholds in temporal relationships between the use of selected antibiotics and incidence rates of carbapenem-resistant Acinetobacter baumannii (Hungary), extended-spectrum β-lactamase-producing Escherichia coli (Spain), cefepime-resistant E. coli (Spain), gentamicin-resistant Pseudomonas aeruginosa (France) and methicillin-resistant Staphylococcus aureus (Northern Ireland) in different epidemiological phases. Using routinely generated data, our approach can identify context-specific quantitative targets for rationalizing population antibiotic use and controlling resistance. Prospective intervention studies that restrict antibiotic consumption are needed to validate these thresholds.
平衡抗生素的可及性与抗生素耐药性的控制是全球公共卫生的重点。目前,抗生素管理是基于“用则失之”的原则,即人群中抗生素的使用与耐药率呈线性相关。然而,理论和数学模型表明,使用-耐药关系是非线性的。造成这种情况的一个解释是,耐药基因通常与“适应度成本”相关,这会削弱病原体的复制或传播能力。因此,只有当抗生素选择压力超过临界阈值时,耐药基因和病原体才可能获得生存优势。这些阈值可以为管理提供定量目标——在避免过度限制抗生素使用的同时,优化耐药性的控制。在这里,我们使用来自欧洲五个国家的历史处方和微生物学数据,评估了一种识别阈值的非线性时间序列分析方法的普遍性。我们确定了在选定抗生素使用与碳青霉烯类耐药鲍曼不动杆菌(匈牙利)、产超广谱β-内酰胺酶大肠杆菌(西班牙)、头孢吡肟耐药大肠杆菌(西班牙)、庆大霉素耐药铜绿假单胞菌(法国)和耐甲氧西林金黄色葡萄球菌(北爱尔兰)的发生率之间的时间关系中的最小阈值,这些关系处于不同的流行病学阶段。使用常规生成的数据,我们的方法可以确定针对合理化人群抗生素使用和控制耐药性的具体情况的定量目标。需要进行前瞻性干预研究来限制抗生素的使用,以验证这些阈值。